首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >REACTION MODEL DEVELOPMENT OF SELECTED AROMATICS AS RELEVANT MOLECULES OF A KEROSENE SURROGATE - THE IMPORTANCE OF M-XYLENE WITHIN THE COMBUSTION OF 1,3,5-TRIMETHYLBENZENE
【24h】

REACTION MODEL DEVELOPMENT OF SELECTED AROMATICS AS RELEVANT MOLECULES OF A KEROSENE SURROGATE - THE IMPORTANCE OF M-XYLENE WITHIN THE COMBUSTION OF 1,3,5-TRIMETHYLBENZENE

机译:选定芳烃作为煤油替代品的相关分子的反应模型 - 甲肾上腺素在1,3,5-三甲基苯燃烧中的重要性

获取原文

摘要

The development of advanced reaction models to predict pollutant emissions in aero-engine combustors usually relies on surrogate formulations of a specific jet fuel for mimicking its chemical composition. 1,3,5-trimethylbenzene is one of the suitable components to represent aromatics species in those surrogates. However, a comprehensive reaction model for 1,3,5-trimethylbenzene combustion requires a mechanism to describe the m-xylene oxidation. In this work, the development of a chemical kinetic mechanism for describing the m-xylene combustion in a wide parameter range (i.e. temperature, pressure, and fuel equivalence ratios) is presented. The m-xylene reaction submodel was developed based on existing reaction mechanisms of similar species such as toluene and reaction pathways adapted from literature. The sub-model was integrated into an existing detailed mechanism that contains the kinetics of a wide range of n-paraffins, iso-paraffins, cyclo-paraffins, and aromatics. Simulation results for m-xylene were validated against experimental data available in literature. Results show that the presented m-xylene mechanism correctly predicts ignition delay times at different pressures and temperatures as well as laminar burning velocities at atmospheric pressure and various fuel equivalence ratios. At high pressure, some deviations of the calculated laminar burning velocity and the measured values are obtained at stoichiometric to rich equivalence ratios. Additionally, the model predicts reasonably well concentration profiles of major and intermediate species at different temperatures and atmospheric pressure.
机译:高级反应模型的发展,以预测航空发动机燃烧器中的污染物排放通常依赖于用于模拟其化学成分的特定喷射燃料的代理制剂。 1,3,5-三甲基苯是在那些替代品中代表芳烃种类的合适组分之一。然而,用于1,3,5-三甲基苯燃烧的综合反应模型需要描述M-二甲苯氧化的机制。在这项工作中,提出了一种用于描述宽参数范围(即温度,压力和燃料当量比中的M-二甲苯燃烧的化学动力学机理。基于类似物种的现有反应机制如甲苯和来自文献的反应途径,开发了M-二甲苯反应子模型。将子模型集成到现有的详细机制中,含有各种N-石蜡,异链烷烃,环烷烃和芳烃的动力学。验证了M-二甲苯的仿真结果针对文献中可用的实验数据验证。结果表明,所呈现的M-二甲苯机理正确地预测不同压力和温度的点火延迟时间以及大气压下的层状燃烧速度和各种燃料等效比。在高压下,在化学计量至丰富的等异常比例下获得计算的层状燃烧速度和测量值的一些偏差。另外,该模型在不同温度和大气压下预测主要和中间物种的合理井浓度谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号