首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference exhibit >Considerations for Pressure Coupling Calculations in Combustion Instability
【24h】

Considerations for Pressure Coupling Calculations in Combustion Instability

机译:燃烧不稳定中压力耦合计算的考虑因素

获取原文
获取外文期刊封面目录资料

摘要

In solid rockets, it is well understood that an unsteady pressure field excites an unsteady burning response. Often this leads to a positive net work on the fluid flow. This manifests as "pressure coupling:" a significant combustion instability driving mechanism. This mechanism can be expressed mathematically as a volumetric work integral describing the divergence of steady and unsteady field variables. The divergence theorem allows for volume integrals to be expressed as surface integrals. In solid rocket motors, it is customary to express the unsteady work (and therefore the pressure coupling) as an integral over the burning surface. However, a disparity arises if the control volume surface does not coincide with the burning surface. For instance, if the control volume surface is taken to be the inner surface of the motor case, no flux is present and the unsteady work is zero. A similar problem arises in liquid rocket engines when complicated feed system and injector configurations are included. Ideally, the control volume in question is the total volume contained within the rigid, physical hardware of feed system (where applicable) and combustion chamber. This is most appropriate because it contains all fluid dynamic and chemical processes while remaining constant in time. However, since no flux occurs through any of the physical hardware surfaces, pressure coupling can only be correctly described as a volumetric effect. In this paper, the volumetric form of the unsteady work term is considered. As a result, a consistent definition and procedure for pressure coupling calculations can be applied to both solid and liquid rockets. Moreover, a volumetric formulation facilitates the calculation of pressure coupling resulting from droplet/acoustic field interactions. This appears as a new driving mechanism in liquid propulsion devices.
机译:在固体火箭中,很好理解,不稳定的压力场激发不稳定的燃烧响应。通常这导致流体流动的正净工作。这表明为“压力耦合:”显着的燃烧不稳定驱动机制。该机制可以在数学上表达,作为描述稳态和不稳定场变量的分歧的体积工作积分。发散定理允许卷积分表示为表面积分。在固体火箭电动机中,常规用来表示不稳定的工作(以及因此压力耦合)作为燃烧表面的一体。然而,如果控制体积表面与燃烧表面不一致,则会产生差距。例如,如果控制体积表面被视为电机壳体的内表面,则不存在通量,并且不稳定的工作为零。当包括复杂进料系统和喷射器配置时,液体火箭发动机中出现类似的问题。理想情况下,有问题的控制卷是饲料系统(适用)和燃烧室的刚性,物理硬件内包含的总体积。这是最合适的,因为它包含所有流体动力学和化学过程,同时剩余时间。然而,由于没有通过任何物理硬件表面发生通量,因此只能被正确地描述压力耦合作为体积效果。在本文中,考虑了不稳定的工作术语的体积形式。结果,可以将压力耦合计算的一致定义和过程应用于固体和液体火箭。此外,体积制剂有助于计算由液滴/声场相互作用引起的压力耦合。这表现为液体推进装置中的新驱动机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号