首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference exhibit >Considerations for Pressure Coupling Calculations in Combustion Instability
【24h】

Considerations for Pressure Coupling Calculations in Combustion Instability

机译:燃烧不稳定性中压力耦合计算的注意事项

获取原文

摘要

In solid rockets, it is well understood that an unsteady pressure field excites an unsteady burning response. Often this leads to a positive net work on the fluid flow. This manifests as "pressure coupling:" a significant combustion instability driving mechanism. This mechanism can be expressed mathematically as a volumetric work integral describing the divergence of steady and unsteady field variables. The divergence theorem allows for volume integrals to be expressed as surface integrals. In solid rocket motors, it is customary to express the unsteady work (and therefore the pressure coupling) as an integral over the burning surface. However, a disparity arises if the control volume surface does not coincide with the burning surface. For instance, if the control volume surface is taken to be the inner surface of the motor case, no flux is present and the unsteady work is zero. A similar problem arises in liquid rocket engines when complicated feed system and injector configurations are included. Ideally, the control volume in question is the total volume contained within the rigid, physical hardware of feed system (where applicable) and combustion chamber. This is most appropriate because it contains all fluid dynamic and chemical processes while remaining constant in time. However, since no flux occurs through any of the physical hardware surfaces, pressure coupling can only be correctly described as a volumetric effect. In this paper, the volumetric form of the unsteady work term is considered. As a result, a consistent definition and procedure for pressure coupling calculations can be applied to both solid and liquid rockets. Moreover, a volumetric formulation facilitates the calculation of pressure coupling resulting from droplet/acoustic field interactions. This appears as a new driving mechanism in liquid propulsion devices.
机译:在固体火箭中,众所周知,不稳定的压力场会激发不稳定的燃烧响应。通常,这会导致流体流动产生正的净功。这表现为“压力耦合:”重要的燃烧不稳定性驱动机制。该机制可以用数学形式表示为体积功积分,描述稳态和非稳态场变量的差异。发散定理允许将体积积分表示为表面积分。在固体火箭发动机中,习惯上将不稳定工作(以及压力偶合)表示为燃烧表面上的一个整体。但是,如果控制体积表面与燃烧表面不一致,则会出现视差。例如,如果将控制体积表面作为电动机壳体的内表面,则不存在磁通,并且非定常功为零。当包括复杂的进料系统和喷射器配置时,在液体火箭发动机中也会出现类似的问题。理想情况下,所讨论的控制体积是进料系统(如果适用)和燃烧室的刚性物理硬件中包含的总体积。这是最合适的,因为它包含所有流体动力学和化学过程,同时保持时间恒定。但是,由于没有通过任何物理硬件表面的磁通发生,因此压力耦合只能正确地描述为体积效应。本文考虑了非定常工作项的体积形式。结果,可以将统一的压力耦合计算的定义和程序应用于固体和液体火箭。此外,体积公式有助于计算由液滴/声场相互作用产生的压力耦合。这似乎是液体推进装置中的一种新的驱动机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号