首页> 外文会议> >Using sparse semantic embeddings learned from multimodal text and image data to model human conceptual knowledge
【24h】

Using sparse semantic embeddings learned from multimodal text and image data to model human conceptual knowledge

机译:使用从多模式文本和图像数据中学到的稀疏语义嵌入来建模人类概念知识

获取原文
获取原文并翻译 | 示例

摘要

Distributional models provide a convenient way to model semantics using dense embedding spaces derived from unsupervised learning algorithms. However, the dimensions of dense embedding spaces are not designed to resemble human semantic knowledge. Moreover, embeddings are often built from a single source of information (typically text data), even though neurocognitive research suggests that semantics is deeply linked to both language and perception. In this paper, we combine multimodal information from both text and image-based representations derived from state-of-the-art distributional models to produce sparse, interpretable vectors using Joint Non-Negative Sparse Embedding. Through in-depth analyses comparing these sparse models to human-derived behavioural and neuroimag-ing data, we demonstrate their ability to predict interpretable linguistic descriptions of human ground-truth semantic knowledge.
机译:分布模型提供了一种使用从无监督学习算法派生的密集嵌入空间对语义建模的便捷方法。但是,密集的嵌入空间的尺寸不能设计为类似于人类的语义知识。此外,即使神经认知研究表明语义与语言和感知都息息相关,嵌入通常是从单一信息源(通常是文本数据)构建的。在本文中,我们结合了来自文本和基于图像的表示形式的多模式信息,这些表示形式都来自最新的分布模型,从而使用联合非负稀疏嵌入生成了稀疏的,可解释的向量。通过将这些稀疏模型与人类行为和神经影像数据进行比较的深入分析,我们证明了它们预测人类地面真相语义知识的可解释语言描述的能力。

著录项

  • 来源
    《》|2018年|260-270|共11页
  • 会议地点 Brussels(BE)
  • 作者单位

    Queen's University Belfast, Belfast, United Kingdom;

    Queen's University Belfast, Belfast, United Kingdom;

    Queen's University Belfast, Belfast, United Kingdom,BrainWaveBank Ltd., Belfast, United Kingdom;

    Queen's University Belfast, Belfast, United Kingdom;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号