首页> 外文会议>Meeting of the Electrochemical Society;International Meeting on Chemical Sensors >(Nanocarbons Division SES Young Investigator Award Address) Nanomaterials Engineering to Probe and Control Living Systems
【24h】

(Nanocarbons Division SES Young Investigator Award Address) Nanomaterials Engineering to Probe and Control Living Systems

机译:(纳米卡尔师部门的年轻调查员奖址)纳米材料工程探测和控制生活系统

获取原文

摘要

Unique physical, chemical, and optical phenomena arise when materials are confined to the nano-scale. We are accustomed to making observations and predictions for the behavior of living systems on a macroscopic scale that is intuitive for the time and size scales of our day-to-day lives. However, the building blocks of life: proteins, nucleic acids, and cells, occupy different spatiotemporal scales. Our lab focuses on understanding and exploiting tunable optical and mechanical properties of nanomaterials to access information about biological systems stored at the nano-scale. In the context of leveraging nanomaterial optical properties, we present recent work on developing and implementing dopamine nanosensors to image dopamine volume transmission in the extracellular space of the brain striatum. We validate our dopamine nanosensor in acute striatal slices with electrical and optogenetic stimulation of dopamine release, and show disrupted dopamine release or reuptake kinetics when brain tissue is exposed to dopamine agonist or antagonist drugs. In the context of leveraging nanomaterial chemical properties, we also discuss how high aspect ratio nanomaterials can be synthesized to carry biomolecular cargo to living systems. In particular, genetic engineering of plants is at the core of environmental sustainability efforts, but the physical barrier presented by the cell wall has limited the ease and throughput with which exogenous biomolecules can be delivered to plants. We will describe how nanomaterials engineering principles can be leveraged to manipulate living plants, in efforts to reconcile the benefits of crop genetic engineering with the demand for non-GMO foods. Our work in the agricultural space provides a promising tool for species-independent, targeted, and passive delivery of genetic material, without transgene integration, into plant cells for rapid and parallelizable testing of plant genotype-phenotype relationships.
机译:当材料限制在纳米级时,出现独特的物理,化学和光学现象。我们习惯于对生活系统的行为进行观察和预测,以对我们日常生活的时间和大小尺度直观的宏观规模。然而,植物的构建块:蛋白质,核酸和细胞,占据不同的时空鳞片。我们的实验室专注于了解和利用纳米材料的可调光和力学性能,以获取有关纳米级存储的生物系统的信息。在利用纳米材料光学性质的背景下,我们在脑纹纹体细胞外空间中的图像多巴胺体积透射到图像多巴胺纳米传感器进行最近的工作。我们将我们的多巴胺纳米传感器验证在急性纹状体切片中,具有多巴胺释放的电气和致敏刺激,并且当脑组织暴露于多巴胺激动剂或拮抗剂时,展示了白胺释放或再摄取动力学。在利用纳米材料性质的背景下,我们还讨论了高纵横比纳米材料如何合成,以将生物分子货物携带到活体系。特别是,植物的基因工程是环境可持续性努力的核心,但细胞壁呈现的物理屏障限制了外​​源生物分子可以将外源生物分子递送到植物的容易和产量。我们将描述如何利用纳米材料工程原则如何操纵生物植物,以便与作物基因工程的益处与对非转基因食品的需求调和作物基因工程的益处。我们在农业领域的工作提供了一个有前途的工具,用于物种独立,有针对性和无源递送遗传物质,没有转基因集成,进入植物细胞,用于植物基因型 - 表型关系的快速和并行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号