首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Multiscale Simulation of Proton Transport in the Catalyst Layer with Consideration of Ionomer Thickness Distribution
【24h】

Multiscale Simulation of Proton Transport in the Catalyst Layer with Consideration of Ionomer Thickness Distribution

机译:考虑离聚物厚度分布,催化剂层中质子传输的多尺度模拟

获取原文
获取外文期刊封面目录资料

摘要

To spread polymer electrolyte fuel cells (PEFCs) widely, which have many advantages, such as low environment load and high energy conversion efficiency, design and optimization of cathode catalyst layers (CLs) are necessary. CLs have inhomogeneous microstructures where Pt catalysts covered with ionomer thin films are supported by carbon particles. Electrons and protons transport to Pt surface through carbon particles and ionomer thin films while oxygen molecules diffuse in void and permeate through ionomer thin film to reach the Pt surface. Therefore, analyzing and understanding of mass transport of proton and oxygen in CLs are important for improving fuel cell performance. However, since an ionomer thin film on the Pt surface has a thickness of about 4 to 10 nm, detail understanding of the relationship between the transport mechanism within the nanostructures of ionomers and the fuel cell performance remains an issue. Therefore, we have focused on the analysis of transport phenomena using mesoscale numerical simulations by considering the effects of nanostructures on mass transport obtained from molecular dynamics (MD) simulations. Kobayashi et al. have studied the thickness dependence of ionomer thin films on proton transport using MD simulations and introduced these effects into the mesoscale simulations. The authors found that the self-diffusion coefficients of proton (D_H~+) show a peak at the ionomer thickness of 7 nm, in which the value of D_H~+ is almost two times larger than that in the bulk membrane, leading to the high proton conductivity that is 1.6 times larger than the bulk membrane. These results suggest that the influence of ionomer thickness at the nanometer scale on the performance of PEFCs is significant. However, in the mesoscale simulations, the resulting cell performance (i.e., I-V curve) show similar results between the systems with and without consideration of the thickness effects because the thickness distributions obtained from experiments was not sufficiently reproduced using the hydrophilic adhesion model for ionomer distribution in the mesoscale simulation. In this study, we develop a new method to improve the non-uniform ionomer distribution that reproduces the experimental thickness distribution. Furthermore, we take into account the oxygen transport results obtained from MD simulation in the mesoscale simulations to understand the effects of ionomer nanostructures on the oxygen transport at larger scale in CLs and the fuel cell performance.
机译:为了广泛地扩散聚合物电解质燃料电池(PEFC),这具有许多优点,例如低环境载荷和高能量转换效率,是阴极催化剂层(CLS)的设计和优化。 CLS具有不均匀的微观结构,其中用离聚物薄膜覆盖的Pt催化剂被碳颗粒支撑。通过碳颗粒和离聚物薄膜将电子和质子传输到Pt表面,而氧分子在空隙中弥漫并通过离聚物薄膜渗透以到达Pt表面。因此,分析和理解CLS中质子和氧气的质量传输对于改善燃料电池性能是重要的。然而,由于PT表面上的离聚物薄膜具有约4至10nm的厚度,因此详细了解离聚物的纳米结构内的传送机制与燃料电池性能之间的关系仍然存在问题。因此,通过考虑纳米结构对从分子动力学(MD)模拟中的质量传输的影响,我们专注于使用Messcale数值模拟的传输现象的分析。 Kobayashi等。使用MD模拟研究了离聚物薄膜对质子传输的厚度依赖性,并将这些效果引入了Messcale模拟。作者发现质子(D_h〜+)的自扩散系数显示在7nm的离聚物厚度下的峰值,其中D_h〜+的值几乎比散装膜中的2倍大。导致高质子电导率比散装膜大1.6倍。这些结果表明,离聚物厚度在纳米规模上对PEFC的性能的影响是显着的。然而,在Messcale模拟中,所得到的细胞性能(即,IV曲线)在具有和不考虑厚度效应的情况下,由于从实验获得的厚度分布没有使用离子聚物分布的亲水性粘附模型而没有充分地再现厚度分布在Messcale仿真中。在这项研究中,我们开发了一种新方法,以改善再均匀离聚物分布,可再现实验厚度分布。此外,我们考虑了MD模拟中的MD模拟中获得的氧传输结果,以了解离聚物纳米结构对CLS和燃料电池性能较大规模的氧气输送的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号