首页> 外文学位 >Modeling of ultrathin catalyst layers in polymer electrolyte fuel cells: Proton transport and water management.
【24h】

Modeling of ultrathin catalyst layers in polymer electrolyte fuel cells: Proton transport and water management.

机译:聚合物电解质燃料电池中超薄催化剂层的建模:质子传输和水管理。

获取原文
获取原文并翻译 | 示例

摘要

Ultrathin catalyst layers (UTCLs) are emerging as a promising alternative to conventional catalyst layers in polymer electrolyte fuel cells. In comparison, UTCLs have dramatically reduced Pt loading and thicknesses and are ionomer-free. We explore two open questions in the theory of UTCLs (1) the proton transport mechanism within the ionomer-free layer and (2) water management in membrane electrode assemblies (MEAs) with UTCLs.;To investigate (1), we present a UTCL model, which assumes the protons are drawn into the UTCL via their interaction with the metal surface charge. We consider a continuum model of a water-filled, cylindrical nanopore with charged walls. We derive the relation between metal potential and surface charge density from a Stern double layer model.;The model suggests the proton concentration and reaction current density to be highly dependent on the charging properties of the metal|solution interface, which are parameterized primarily by the potential of zero charge. Therefore, materials for UTCLs should be selected not only for their intrinsic mass activities and durability, but also for their charging properties. A systematic evaluation of the interplay of electrostatic, kinetic, and mass transport phenomena in UTCL demanded an impedance variant of the model. Based on the general set of transient equations, we have derived analytical impedance expressions and equivalent circuit representations in 4 limiting cases.;While the UTCL model suggests the charging of the metal|solution interface to be crucial to performance, theoretical studies on the charging behaviour of platinum are limited. We present a generalised computational hydrogen electrode that enables the ab initio simulation of metal|solution interfaces as a function of pH and potential.;To address (2), we present a water balance model to MEAs with UTCLs. The model relates the current densities, capillary pressure distributions, and fluxes of vapor and liquid water. Analysis of the model suggests that UTCLs require efficient liquid transport paths out of the MEA at low and moderate temperature. We discuss strategies for increasing the current density for the onset of GDL flooding, via enhanced liquid permeabilities, vaporization areas, and gas pressure differentials.
机译:超薄催化剂层(UTCL)正在出现,有望替代聚合物电解质燃料电池中的常规催化剂层。相比之下,UTCL显着降低了Pt的装载量和厚度,并且不含离聚物。我们探讨了UTCL的理论中的两个悬而未决的问题:(1)无离聚物层内的质子传输机制;(2)具有UTCL的膜电极组件(MEA)中的水管理。为研究(1),我们提出了UTCL模型,假设质子通过它们与金属表面电荷的相互作用被吸入UTCL。我们考虑了带电荷的壁的充满水的圆柱形纳米孔的连续模型。我们从Stern双层模型中得出金属势与表面电荷密度之间的关系。该模型表明质子浓度和反应电流密度高度依赖于金属界面的带电特性,而这些特性主要由金属的界面参数决定。零电荷的潜力。因此,不仅应选择UTCL的材料,以考虑其固有的质量活度和耐用性,还应选择其充电性能。要对UTCL中的静电,动力学和质量传输现象之间的相互作用进行系统评估,就需要模型的阻抗变量。基于瞬态方程组的一般性,我们导出了4种极限情况下的分析阻抗表达式和等效电路表示形式。虽然UTCL模型表明金属界面的充电对于性能至关重要,但是对充电行为的理论研究的铂金是有限的。我们提出了一种通用的氢电极,可以从头开始模拟溶液界面的pH和电势。为解决(2),我们提出了具有UTCL的MEA的水平衡模型。该模型将电流密度,毛细管压力分布以及蒸汽和液态水的通量联系起来。对模型的分析表明,UTCL需要在低温和中温下将有效的液体从MEA输送出MEA。我们讨论了通过提高液体渗透率,汽化面积和气压差来增加GDL驱油开始时的电流密度的策略。

著录项

  • 作者

    Chan, Karen.;

  • 作者单位

    Simon Fraser University (Canada).;

  • 授予单位 Simon Fraser University (Canada).;
  • 学科 Chemistry Physical.;Energy.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号