首页> 外文期刊>Journal of power sources >Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells
【24h】

Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells

机译:质子交换膜燃料电池阴极催化剂层中电荷和气体输送的离聚物含量效应

获取原文
获取原文并翻译 | 示例
       

摘要

Proton-exchange membrane fuel cell (PEMFC) performance is strongly related to the complex transport of gas and charge carriers in the cathode catalyst layer. Thus, we investigated the transport properties of catalyst layers at different ionomer/carbon ratios, ranging from 0.1 to 1, focusing on oxygen, proton and electron transport. Oxygen transport was studied using the limiting current technique, separately analyzing the contributions of molecular, Knudsen, and ionomer transport resistances by changing the temperature and gas pressure. The proton and electron resistance of the catalyst layers were determined by impedance spectroscopy and current voltage measurements, respectively. The results showed that the performance of fuel cells can be enhanced by selecting a suitable ionomer/carbon ratio and that increasing the ionomer content decreases the proton resistance and increases the electron resistance of catalyst layers. Accordingly, low oxygen transport and proton resistance at an ionomer/carbon ratio of 0.6 (26.5%wt.) led to the highest fuel cell power density (595 mW cm(-2)). These results fully support well-established in numerous works optimal ionomer content, revealing the underlying mechanisms of high fuel cell performance. Furthermore, the porosimetry results and electron microscopy measurements confirmed that transport properties strongly affect fuel cell performance.
机译:质子 - 交换膜燃料电池(PEMFC)性能与阴极催化剂层中的气体和电荷载体的复杂传输强烈相关。因此,我们研究了不同离聚物/碳比的催化剂层的运输特性,范围为0.1至1,聚焦氧气,质子和电子传输。使用限制电流技术研究氧气传输,通过改变温度和气体压力分别分析分子,knudsen和离聚物传输的贡献。通过阻抗光谱和电流电压测量法测定催化剂层的质子和电子电阻。结果表明,通过选择合适的离聚物/碳比可以提高燃料电池的性能,并且增加离聚物含量降低质子电阻并增加催化剂层的电子电阻。因此,低氧传输和质量为离聚物/碳比为0.6(26.5%wt。)导致最高燃料电池功率密度(595mm(-2))。这些结果完全支持众多作品最佳离子含量的良好建立,揭示了高燃料电池性能的潜在机制。此外,孔隙测量结果和电子显微镜测量证实,运输性能强烈影响燃料电池性能。

著录项

  • 来源
    《Journal of power sources》 |2021年第1期|229531.1-229531.9|共9页
  • 作者单位

    Charles Univ Prague Fac Math & Phys Dept Surface & Plasma Sci V Holesovickach 2 Prague 18000 8 Czech Republic;

    Charles Univ Prague Fac Math & Phys Dept Surface & Plasma Sci V Holesovickach 2 Prague 18000 8 Czech Republic;

    Czech Acad Sci Inst Rock Struct & Mech Dept Geochem V Holesovickach 94-41 Prague 18209 8 Czech Republic;

    Charles Univ Prague Fac Math & Phys Dept Surface & Plasma Sci V Holesovickach 2 Prague 18000 8 Czech Republic;

    Charles Univ Prague Fac Sci Dept Phys & Macromol Chem Hlavova 2030-8 Prague 12843 2 Czech Republic;

    Charles Univ Prague Fac Math & Phys Dept Surface & Plasma Sci V Holesovickach 2 Prague 18000 8 Czech Republic;

    Charles Univ Prague Fac Math & Phys Dept Surface & Plasma Sci V Holesovickach 2 Prague 18000 8 Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Catalyst layer; Oxygen transport; Proton conductivity; Ionomer content; Fuel cell performance;

    机译:催化剂层;氧气运输;质子电导率;离聚物含量;燃料电池性能;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号