首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Polymer-Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for Stable Lithium Metal Anode
【24h】

Polymer-Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for Stable Lithium Metal Anode

机译:聚合物 - 无机纳米复合涂层具有高离子电导率和稳定锂金属阳极的转移数

获取原文

摘要

Lithium metal is an ideal candidate for battery anodes due to its high specific capacity (3860 mAh g~(-1)) and low electrochemical potential (-3.04 V). However, non-uniform lithium electrodeposition causes low Coulombic efficiency, poor cycling stability, potential safety issues, and has hindered the commercialization of lithium metal batteries at scale. The parasitic reaction of lithium metal with liquid electrolytes results in the formation of a solid electrolyte interphase (SEI). During cycling, the SEI tends to break continuously, exposing unreacted lithium metal to the electrolyte. This not only promotes non-uniform lithium plating and stripping, but also leads to further SEI formation, which consumes the liquid electrolyte. In addition, the detachment of dendritic lithium from the bulk lithium electrode produces electrically isolated 'dead' lithium during lithium stripping, which no longer participates in the cell reaction. Dendritic lithium and 'dead' lithium formed during cycling largely increase the surface area of the lithium metal anode and consequently accelerates electrolyte consumption. These mechanisms lead to rapid capacity fading and cell failure due to either the complete consumption of the electrolyte or the complete conversion of the lithium metal anode to 'dead' lithium. The formation of lithium metal dendrites can also causes abrupt cell short circuit, which results in thermal runaway. Therefore, a stable interface on lithium metal electrode that enables uniform lithium electrodeposition is the key for the development of lithium metal batteries.
机译:锂金属是电池阳极的理想候选者,因为其高特定容量(3860mAh g〜(-1))和低电化学电位(-3.04V)。然而,非均匀的锂电沉积导致低库仑效率,循环稳定性差,潜在的安全问题,并且已经阻碍了锂金属电池的商业化。锂金属与液态电解质的寄生反应导致形成固体电解质间相互作用(SEI)。在循环期间,SEI倾向于连续破裂,将未反应的锂金属暴露于电解质上。这不仅促进了不均匀的锂镀层和剥离,而且还导致进一步的SEI形成,其消耗液体电解质。此外,在锂汽提中,从块状锂电极的树枝状锂的分离产生电隔离的“死”锂,这不再参与电池反应。在循环期间形成的树突锂和'死'锂大大增加了锂金属阳极的表面积,从而加速了电解质消耗。由于电解质的完全消耗或锂金属阳极完全转化为“死”锂,这些机制导致快速容量衰落和细胞失效。锂金属枝晶的形成也可以引起突然的细胞短路,这导致热失控。因此,锂金属电极上的稳定界面,使锂电电极均匀是锂金属电池的开发的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号