首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Bismuth Vanadate Encapsulated with Reduced Graphene Oxide for Hydrogen Peroxide Generation
【24h】

Bismuth Vanadate Encapsulated with Reduced Graphene Oxide for Hydrogen Peroxide Generation

机译:用于氧化氢生成的石墨烯氧化物的铋钒酸盐包封

获取原文

摘要

Hydrogen peroxide (H_2O_2), a strong oxidant, is considered as a highly value-added chemical due to its diverse applications. The conventional multi-step process for H_2O_2 production in the industrial setting is energy intensive, using reactants of explosive nature and expensive catalysts. A photocatalytic H_2O_2 production, in contrast, is a sustainable and eco-friendly process, requiring mostly water, dioxygen (O_2), and sunlight. The role of the photocatalyst is to provide the electron for the reduction of O_2 and holes for the release of hydrogen ion in water. The main challenge with this approach is the lack of an efficient photocatalyst, which can absorb light and transfer the energy to redox reaction. Bismuth vanadate (BiVO_4), a semiconductor with a low band gap energy (~2.4 eV), is known to be a promising photocatalyst. Moreover, reduced graphene oxide (RGO) is well-known for its role in promoting the separation and transport of charges, preventing the recombination of photogenerated electron-hole pairs. This study proposes a method of synthesizing a composite catalyst by functionalizing BiVO_4, via the encapsulation with RGO. The catalyst synthesis is optimized by varying the amount of graphene oxide (GO) loading on BiVO_4. This paper will summarize the structural, morphological, and photoelectrochemical characterization of these BiVO_4-RGO catalysts. Preliminary results have indicated that the H_2O_2 production is enhanced by 3-fold with the presence of RGO and BiVO_4 than BiVO_4 alone. The role of carbon doping in improving the light trapping and charge separation, resulting in the enhancement of photocatalytic H_2O_2 yield, will be examined.
机译:由于其不同的应用,过氧化氢(H_2O_2),强氧化剂被认为是一种高增值的化学品。在工业设定中的H_2O_2生产中的常规多步骤方法是能量密集,利用爆炸性性质和昂贵的催化剂的反应物。相比之下,光催化H_2O_2生产是可持续和环保的过程,需要大多数水,DIOxygen(O_2)和阳光。光催化剂的作用是为电子提供用于释放水中氢离子的O_2和孔的电子。这种方法的主要挑战是缺乏高效的光催化剂,可以吸收光线并将能量转移到氧化还原反应。铋钒酸盐(BIVO_4),具有低带隙能量(〜2.4eV)的半导体,是有前途的光催化剂。此外,还原石墨烯(RGO)在促进电荷分离和运输方面的作用是众所周知的,防止光生电子孔对的重组。该研究提出了通过用RGO的包封来通过封装来合成复合催化剂来合成复合催化剂的方法。通过改变BIVO_4上的石墨烯氧化物(GO)负载量来优化催化剂合成。本文将总结这些Bivo_4-Rgo催化剂的结构,形态和光电化学表征。初步结果表明,通过单独的BIVO_4,H_2O_2的产生通过3倍而不是BIVO_4的存在。将检查碳掺杂在改善光捕获和电荷分离中的作用,从而导致光催化H_2O_2产量的增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号