首页> 外文会议>International Silicon-Germanium Technology and Device Meeting >Benchmarking of Novel Contact Architectures on Silicon and Germanium
【24h】

Benchmarking of Novel Contact Architectures on Silicon and Germanium

机译:硅和锗的新型联系架构的基准

获取原文

摘要

Novel contact architectures to n-Silicon (n-Si) and to n-Germanium (n-Ge) were benchmarked for the first time against the state-of-the-art contact architecture to n-Si. It was found that although the recently reported contact architectures to n-Ge exhibit markedly improved performance, more work must be done to match state-of the-art NiSi/n-Si contact architecture in terms of current-carrying capability. With the continued scaling of contact length in accordance with Moore's law, the interface resistance between metal and semiconductor has become a critical area of focus to achieve the required targets for lower external series resistance (Fig. 1, Fig. 2). Prior studies have shown effective pathways to lower the interface resistance for p-MOSFETs, like the use of narrow bandgap Silicon-Germanium (SiGe) compounds in Source/Drain (S/D) regions in silicon channel transistors. In addition, the use of a Germanium channel device provides inherent benefit of Fermi-level pinning near the valence band for contacts to p-Ge S/D. Alternative contact architectures are now being sought to improve the interface contact resistance to n-Si (for Silicon channel CMOS) and to n-Ge (for Germanium channel CMOS) by reducing the Schottky Barrier Height (SBH) between metal and n-type S/D semiconductors. In this work, a metric which is based on current density (J) at given semiconductor doping density (ND) was found to be most suitable for benchmarking contact architectures of widely varying maturities. Metal-Insulator-Semiconductor (MIS) contact architecture, in contrast to current Metal-Semiconductor (MS) architecture, has been proposed to reduce SBH by unpinning the Fermi level [1-2]. There is a concern, however, that the insertion of a high bandgap oxide results in large tunnel resistance and would offset the positive effect of Fermi level unpinning. It is therefore necessary to benchmark the current-carrying capability of the MIS contact architectures on both n-Si and n-Ge with respec- to state-of-the-art solution. Since J depends exponentially on ND, we propose to use J versus ND as a way to benchmark different MIS contact architectures. The reference NiSi/n-Si and PtSi/n-Si current density data was obtained from [3], and J vs. ND data was fitted to an analytical model [4]. A SBH of 0.55eV provided best fit (Fig. 4), consistent with numerical QM analysis done on the same data set [5]. It is also consistent with values extracted on nanoscale contacts for NiPtSi/n-Si contact architecture with heavily doped S/D semiconductor (31020 cm-3) [6]. In one study, a TaN/LaO/n-Si (MIS) contact stack [2] is benchmarked against the NiSi/n-Si reference system in Fig. 5. The TaN/LaO/n-Si contact stack provides a very promising result. The benefit demonstrated at low ND, however, needs to be demonstrated at ND 31020 cm-3. Various contact architectures to n-Ge are also benchmarked using J vs. ND plot in Fig. 6. Data was taken from [1, 7-10]. When an insulator is inserted between the metal and n-Ge, J is attenuated due to the insulator energy barrier. For example see TiO2/n-Ge, AlO/n-Ge, MgO/n-Ge data points which are lower than the reference line. This leads us to conclude that the MIS contact architecture on n-Ge currently underperforms state-of-the-art NiSi/n-Si system.
机译:新的联系架构到N-Silicon(N-Si)和N-Gearium(N-GE)首次采用最先进的接触架构对N-Si进行基准测试。结果发现,尽管最近报告的联系架构对N-GE表现出显着提高的性能,但必须在携带电流能力方面进行更多的工作以匹配最先进的NISI / N-Si联系架构。通过持续的接触长度符合摩尔法的缩放,金属和半导体之间的界面电阻已成为临界聚焦领域,以实现较低外部串联电阻的所需目标(图1,图2)。先前的研究表明了降低P-MOSFET的界面电阻的有效途径,例如在硅通道晶体管中使用源/漏极(S / D)区域中的窄带凝硅 - 锗(SiGe)化合物。此外,使用锗通道装置提供了FERMI-LEVEL固定的固有益处,以靠近对P-GE S / D的触点的价带附近。现在正在寻求替代联系架构通过减少金属和N型S之间的肖特基势垒高度(SBH)来改善N-Si(对于硅通道CMOS)和N-GE(对于锗通道CMOS)的界面接触电阻/ d半导体。在这项工作中,发现基于给定的半导体掺杂密度(ND)的电流密度(J)的度量最适合于基于基于不同的熟实的接触架构。金属绝缘体 - 半导体(MIS)接触架构与当前金属半导体(MS)架构相比,已经提出通过卸载FERMI水平[1-2]来减少SBH。然而,存在关注的是,插入高带隙氧化物导致大的隧道抗性,并将抵消费米水平造成的积极效果。因此,有必要将MIS与N-GE的MIS接触架构的电流承载能力与最先进的解决方案进行基准。由于j呈指数级正确,我们建议使用j与nd作为基准打击不同的MIS联系架构的方式。从[3]获得参考NISI / N-Si和PTSI / N-Si电流密度数据,J与ND数据安装在分析模型[4]。 SBH为0.55EV提供最佳拟合(图4),这与在同一数据集中完成的数值QM分析[5]。它还与利用掺杂S / D半导体( 3 1020 cm-3)[6]的Niptsi / N-Si接触架构上提取的纳米级/ N-Si接触架构上提取的值符合。在一项研究中,棕褐色/老挝 / n-Si(MIS)接触堆[2]采用图5中的NISI / N-SI参考系统基准测试。TAN / LAO / n-si联系人堆栈提供了非常有前途的结果。然而,在低ND中所示的好处需要在ND 3 1020 cm-3。对于N-GE的各种联系架构也使用图6中的ND图来标记。6.数据从[1,7-10]中取出。当绝缘体在金属和N-GE之间插入时,J由于绝缘体能量屏障而衰减。例如,参见TiO2 / N-GE,ALO / N-GE,MgO / N-GE数据点低于参考线。这导致我们得出结论,N-GE上的MIS联系架构目前低于最先进的NISI / N-SI系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号