首页> 外文会议>Annual technical conference and exposition of American Filtration Separations Society >Solid-Liquid Separation in Bio-Suspension Systems with Compressible Solids and Non- Newtonian / Viscoelastic Fluids Containing Colloidally Dispersed Macromolecules
【24h】

Solid-Liquid Separation in Bio-Suspension Systems with Compressible Solids and Non- Newtonian / Viscoelastic Fluids Containing Colloidally Dispersed Macromolecules

机译:具有可压缩固体和含有胶体分散的大分子的无压缩固体和非牛顿/粘弹性液中的生物悬浮系统中的固液分离

获取原文

摘要

Bio-materials are in general compressible due to a structural break down under acting normal and shear forces but also due to gas / air fractions which are entrapped. In solid liquid separation of suspension systems containing solid particles with such properties using pressureand/ or centrifugal filtration techniques the filter-cake permeability is pressure and time dependent. At the same time most of the continuous fluid phases in bio-suspensions contain solved or colloidally dispersed macromolecules which generate non-Newtonian rheological properties like shear-thinning and viscoelasticity. Filtrate flow through compressible filter cakes consisting of bio material particles was carried out in pressure and / or centrifugal fields like applicable in hyperbaric centrifugation processing (superposition of static pressure and centrifugal fields). The filtration process - filter cake structure - filtrate rheology - relationships are described from a theoretical and experimental point of view. For filter cake structure and non-Newtonian filtrate rheology analytics, methods were developed which allow to transfer the measured material data for the interpretation of processing experiments. As shown in detail, the influence of filter cake compressibility and non-Newtonian filtrate flow behavior leads to material related optima in filter cake permeability and mass flow rate at specific static pressure and /or C-value in filtration / centrifugation processing. The developed analytical/experimental methodology provides a basis for pre-calculation of processing optima for filtration processing for complex bio-suspension systems. In the case of dispersed macromolecules in the filtrate its flow behavior in the pore system of the filter cake can additionally depend on the impact of flow forces on the macromolecular structure. If critical shear or elongation stresses or related deformations are exceeded, colloidally dispersed macromolecules can change their structure, thus supporting aggregation. This has a strong impact on the flow through the filter cake but can also influence functional properties of the filtrate. Using dynamic light scattering analysis structural changes of macromolecules in bio-suspension systems were monitored and related to changes in the flow behavior through packed particle beds during filtration processing.
机译:由于作用正常和剪切力,生物材料通常是可压缩的,而且由于剪切力的作用正常和剪切力,还原为捕获的气体/空气级分。在含有使用压力/或离心过滤的固体颗粒的固体颗粒的固体液体分离,滤饼渗透性是压力和依赖性的。同时,生物悬浮液中的大多数连续流体相含有溶解或胶体分散的大分子,其产生非牛顿流变性质,如剪切稀释和粘弹性。通过由生物材料颗粒组成的可压缩过滤器蛋糕的滤液流动在适用于高压离心处理(静压和离心区域的叠加)的压力和/或离心领域中进行。过滤过程 - 滤饼结构 - 滤饼流变学 - 关系来自理论和实验的观点。对于滤饼结构和非牛顿滤液流变学分析,开发了方法,其允许转移测量的材料数据以解释处理实验。如详细说明的,滤饼压缩性和非牛顿滤液流动行为的影响导致在过滤/离心处理中的特定静压和/或C值下的滤饼渗透率和质量流速中的材料相关Optima。开发的分析/实验方法提供了用于复杂生物悬架系统的过滤处理的加工Optima的预先计算的基础。在滤液中分散的大分子在滤饼中的流动性能的情况下,滤饼的孔系统中可以另外取决于流动力对大分子结构的影响。如果超过临界剪切或伸长应力或相关变形,则胶体分散的大分子可以改变它们的结构,从而支撑聚集。这对通过滤饼的流动产生了强烈的影响,但也可以影响滤液的功能性质。使用动态光散射分析生物悬架系统中大分子的结构变化,并与过滤处理期间通过填充颗粒床通过填充颗粒床的流动性能的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号