【24h】

Geological Interpretation Using Pattern Recognition from Self-Organizing Maps and Principal Component Analysis

机译:从自组织地图和主成分分析中使用模式识别的地质解释

获取原文

摘要

Since the late 1970s, the explosion of various kinds of seismic attributes derived from the acquired seismic signal has been the boon and the bane of the interpreter. Now the interpretation of reflection data requires powerful computers and advanced visualization software packages, but the interpreter is always looking for ways of distilling vast amounts of data down to essential volumes necessary to make prudent choices for reducing risk in picking drilling locations. Seismic attributes are considered to be any measurable properties of the seismic signal. They can be measured at one instance in time or depth, or in a window of time or depth. They can be single trace measurements, multiple traces, or even on a surface interpreted in the data. Common categories of seismic attributes include the instantaneous (e.g., frequency, phase, Q), geometric (e.g., coherence, curvature), amplitude enhancing (e.g., sweetness, relative acoustic impedance, average energy), amplitude variations with offset (AVO) (e.g., fluid factor, intercept, gradient), spectral decomposition (e.g., either envelope based or wavelet based) and inversion (e.g., Poisson's ratio, density, brit-tleness, and more). The use of principal component analysis (PCA), which is a linear quantitative process designed to understand which seismic attributes have interpretative significance by analyzing the variations in the data, has proven to be an excellent approach to sorting through vast amounts of data. PCA used in the interpretation workflow can help determine meaningful seismic attributes, and in turn, these attributes can be used as input into neural analysis in the creation of self-organized maps (SOM). SOM analysis is a pattern recognition process using unsupervised neural networks, and can reveal the natural clustering and patters in the data which often are distinct geological features not easily identifiable using singular seismic attributes. Several case histories using PCA and SOM, in both conventional and unconventional reservoirs, will be reviewed to show the importance of these time-saving tools when added to the interpretation workflow.
机译:自20世纪70年代后期以来,爆炸来自所获得的地震信号的各种地震属性一直是解释器的福音和祸害。现在对反射数据的解释需要强大的计算机和高级可视化软件包,但翻译员始终寻找将大量数据蒸馏到使得谨慎选择所需的基本卷,以降低采摘钻井位置的风险所需的基本卷。地震属性被认为是地震信号的任何可测量性质。它们可以在一个实例中以时间或深度或时间或深度的窗口测量。它们可以是单迹线测量,多个迹线,甚至在数据中解释的表面上。常见的地震属性类别包括瞬时(例如,频率,相位,Q),几何(例如,相干,曲率),幅度增强(例如,甜度,相对声阻抗,平均能量),偏移(AVO)的幅度变化(例如,流体因子,截距,梯度),光谱分解(例如,基于外壳或小波的基于小波的)和反转(例如,泊松比,密度,英国人,英国人)。主要成分分析(PCA)的使用是一种线性定量过程,该方法旨在通过分析数据的变化来了解哪些地震属性具有解释性意义,已被证明是通过大量数据进行分类的优秀方法。在解释工作流程中使用的PCA可以帮助确定有意义的地震属性,然后又可以将这些属性用作创建自组织地图(SOM)中的神经分析中的输入。 SOM分析是使用无监督的神经网络的模式识别过程,并且可以在数据中揭示数据中的自然聚类和图案,这通常不容易使用奇异地震属性来识别。将审查使用PCA和SOM的几种案例历史,在传统和非传统的储层中,将被审查,以显示在添加到解释工作流程时节省这些节省工具的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号