【24h】

Modelling Turn-Taking in Human Conversations

机译:在人类谈话中建模转弯

获取原文

摘要

In this work, we make a contribution to developing turn-taking mechanism in spoken dialogue systems. We focus on modelling the turn-taking behavior in human-human conversations. The proposed models are tested on the Switchboard corpus which contains conversations annotated at the utterance level. Several experiments were performed to analyze the salience of different features that are associated with the preceding utterances for the task of predicting whether there will be a change in speaker. The impact of the n-gram sequential modelling on turn-taking is studied. Machine learning techniques are also employed to perform this prediction task. Results from the experiments suggest that a combination of the preceding dialogue sequence, previous changes in speaker information and duplicating the sequences by replacing speaker IDs plays an important role in modelling turn-taking. Utterance sequences of length 3 in N-grams resulted in higher predictability for this task. Experiments suggest that a machine learning technique with 4-grams of a combination of all these features is effective for predicting speaker changes.
机译:在这项工作中,我们为在口语对话系统中制定了转弯机制的贡献。我们专注于建模人类谈话中的转弯行为。所提出的模型在交换机语料库上进行了测试,其中包含在话语级别注释的对话。进行了几个实验以分析与前面的话语相关的不同特征的显着性,以便预测扬声器是否会发生变化。研究了N-GRAM顺序建模对转弯的影响。机器学习技术也用于执行该预测任务。实验结果表明,前面对话序列的组合,先前通过替换扬声器ID替换扬声器信息的更改和复制序列的变化在建模开启中起着重要作用。 N-克中长度3的话语序列导致这项任务的可预测性更高。实验表明,一种机器学习技术,具有4克的所有这些特征的组合对于预测扬声器改变是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号