首页> 外文会议>SPE/AAPG/SEG Unconventional Resources Technology Conference >Multi-Physics Pore-Scale Modeling of Particle Plugging due to Fluid Invasion during Hydraulic Fracturing
【24h】

Multi-Physics Pore-Scale Modeling of Particle Plugging due to Fluid Invasion during Hydraulic Fracturing

机译:液压压裂期间液体侵袭引起的多物理孔径建模

获取原文

摘要

The productivity from hydraulically fractured wells is contingent to different mechanisms of formation damage by the fracturing fluid, such as fluid leakoff, proppant embedment, and fines generation from proppant crushing. Particle plugging during fluid invasion in hydraulic fracturing is considered to have a significant detrimental effect on production. In this work, we developed a multi-physics pore-scale plugging simulator integrated with a fracture simulator to investigate the impact of particle plugging and quantify the formation damage of the invaded region near hydraulic fractures. Our multi-physics simulator bridges pore-scale phenomena with those occurring at the reservoir scale. The pore-scale particle-plugging simulator uses 3-D pore-network models based on pore-body and pore-throat characteristics derived from petrophysical measurements. Based on filtration theory we compute transport and retention of particles, and permeability changes due to fracturing-fluid invasion. These parameters are interfaced with a fracture simulator that provides pressure, leak-off rate, proppant size and concentration to the pore-network model. These parameters are representative of typical multi-stage hydraulic-fracturing operations. The fracture simulator also provides fracture-geometry and fracture-conductivity. Our methodology enables a novel and practical way to understand the particle-plugging process in the matrix- fracture interface during hydraulic-fracturing operations. The coupled model considers heterogeneity at pore scale to account for the role of pore structure on particle transport, concurrently studying its behavior on the fracture. We used petrophysical measurements and well log data obtained from Wolfcamp shales in this study. From the sensitivity analysis performed for different hydraulic-fracturing operational constraints and fluid properties like proppant size and concentration, we are able to determine the effect of these variables on matrix-fracture permeability impairment at the pore-scale. The multi-scale integration allowed us to quantify the influence of filtration on the fracturing operations.
机译:液压裂缝井的生产率取决于压裂液,例如液体泄漏,支撑剂嵌入,以及从支撑剂压碎的罚款的不同机制。液压压裂中的流体侵袭过程中的颗粒堵塞被认为对生产具有显着的不利影响。在这项工作中,我们开发了一种多物理孔径堵塞模拟器,与裂缝模拟器集成,以研究粒子堵塞的影响,并量化液压骨折附近入侵区域的形成损坏。我们的多物理模拟器桥接孔隙尺度现象与水库规模发生的人。孔隙级粒子堵塞模拟器使用基于孔体的3-D孔网络模型和来自岩石物理测量的孔喉部特性。基于过滤理论,我们计算颗粒的运输和保留,并且由于压裂液侵袭引起的渗透性变化。这些参数与裂缝模拟器接口,该裂缝模拟器为孔网模型提供压力,泄漏率,支撑剂大小和浓度。这些参数代表典型的多级水力 - 压裂操作。裂缝模拟器还提供骨折 - 几何形状和裂缝导电性。我们的方法能够使新颖的和实用的方法能够在液压压裂操作期间了解基质裂缝界面中的粒子堵塞过程。耦合模型认为在孔隙尺度下的异质性以考虑孔结构对颗粒转运的作用,同时研究其对骨折的行为。我们使用了从本研究中从Wolfcamp Hales获得的岩手物理测量和井数据。从针对不同液压压裂操作约束和流体性质的敏感性分析,如支撑剂尺寸和浓度,我们能够确定这些变量对孔鳞的基质裂缝渗透性损伤的影响。多尺度集成允许我们量化过滤对压裂操作的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号