首页> 外文期刊>Energy & fuels >Pore-Scale Modeling of Fluid-Rock Chemical Interactions in Shale during Hydraulic Fracturing
【24h】

Pore-Scale Modeling of Fluid-Rock Chemical Interactions in Shale during Hydraulic Fracturing

机译:液压压裂期间页岩流体岩化学相互作用的孔径尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

During the hydraulic fracturing process in unconventional shale gas reservoirs, chemical interactions between the hydraulic fracturing fluid (HFF) and the shale rock could result in mineral precipitation and dissolution reactions, potentially influencing the gas transport by dissolving or clogging the fractures. The pore-scale distribution of the minerals, especially the highly reactive minerals, such as calcite, in the shale matrix can impact the structural evolution of the shale rocks. In the present study, a pore-scale reactive transport model is built to investigate the impact of the pore-scale distribution of calcite on the structural alteration of the shales. The alteration of the shales is caused by the barite precipitation and the dissolution of calcite and pyrite. The simulation results show that the calcite dissolution leads to a permeability enhancement. The permeability enhancement for the shales with coarser calcite grains is more pronounced than that for the shales with finer grains of calcite. The results also indicate that the extent of the permeability enhancement is even more noticeable if the HFF is injected with a higher velocity. The fluid chemistry analysis indicates that the fluid pH for the shale with the fine grains of calcite is higher than that of the shale with the coarse calcite grains and that the injection of the HFF with a higher flow rate leads to the lower pH values. The calcite dissolution observed in the simulations mainly occurs near the inlet. For the shale with the finer calcite grains, barite precipitation occurs mostly close to the inlet, but for the shale with coarser calcite grains, barite precipitation extends more into the domain. This penetration depth increases when the HFF is injected with a higher velocity. In addition to the effect of the calcite distribution, we also used the pore-scale model to study the effect of the calcite content on the structural evolution of the shales. The results from these simulations showed that a higher calcite content can result in higher pH values, higher permeabilities, and more barite precipitation in the domain.
机译:在液压压裂过程中,在非传统的页岩气储层期间,液压压裂液(HFF)和页岩岩之间的化学相互作用可能导致矿物沉淀和溶解反应,潜在地通过溶解或堵塞裂缝来影响气体输送。矿物质的孔径分布,特别是高反应性矿物质,如方解石,在页岩基质中可以影响页岩岩石的结构演变。在本研究中,建立了一种孔隙尺度的反应运输模型,以研究方解石孔径分布对Shales结构改变的影响。 Shales的改变是由骨髓沉淀和方解石和黄铁矿的溶解引起的。仿真结果表明,方解石溶解导致渗透性增强。具有较粗的方解石晶粒的Shales的渗透性增强比具有更精细的方解石粒子的Shales更明显。结果还表明,如果HFF注入更高的速度,则渗透性增强程度更加明显。流体化学分析表明,具有粗煤矿粒细粒的页岩的流体pH值高于粗糙方解石晶粒的流体pH,并且通过更高的流速注入HFF导致较低的pH值。在模拟中观察到的方解石溶解主要发生在入口附近。对于具有更精细的方解石颗粒的页岩,重晶石沉淀通常靠近入口,但对于具有较粗糙方解石晶粒的页岩,重晶石沉淀越多进入该结构域。当HFF注入更高的速度时,这种穿透深度增加。除了方解石分布的影响外,还使用孔径模型来研究方解石内容对Shales结构演变的影响。这些模拟的结果表明,较高的方解石含量可导致域中的pH值,更高的渗透率,更高的重晶石沉淀。

著录项

  • 来源
    《Energy & fuels》 |2021年第13期|10461-10474|共14页
  • 作者单位

    Univ Nottingham Sch Chem Nottingham NG7 2RD England|Heriot Watt Univ Inst GeoEnergy Engn Edinburgh EH14 4AS Midlothian Scotland;

    Univ Nottingham Sch Chem Nottingham NG7 2RD England;

    Univ Manchester Dept Chem Engn & Analyt Sci Manchester M1 3AL Lancs England;

    Univ Manchester Dept Chem Engn & Analyt Sci Manchester M1 3AL Lancs England;

    Univ Nottingham Dept Chem & Environm Engn Nottingham NG7 2RD England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号