首页> 外文会议>SAE World Congress Experience >Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method
【24h】

Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method

机译:使用晶格Boltzmann方法的排气和消声器气流理预测

获取原文
获取外文期刊封面目录资料

摘要

Exhaust systems are a necessary solution to reduce combustion engine noise originating from flow fluctuations released at each firing cycle. However, exhaust systems also generate a back pressure detrimental for the engine efficiency. This back pressure must be controlled to guarantee optimal operating conditions for the engine. To satisfy both optimal operating conditions and optimal noise levels, the internal design of exhaust systems has become complex, often leading to the emergence of undesired noise generated by turbulent flow circulating inside a muffler. Associated details needed for the manufacturing process, such as brackets for the connection between parts, can interact with the flow, generating additional flow noise or whistles. To minimize the risks of undesirable noise, multiple exhaust designs must be assessed early to prevent the late detection of issues, when design and manufacturing process are frozen. However, designing via an experimental approach is challenging. Since the construction process does not exist yet, physical prototypes lack the details associated to manufacturing. In addition, experimental optimization is time-consuming, as each design iteration will require a new physical prototype, thus increasing costs and development times, or limiting the explored design space. Alternatively, larger design spaces may be explored using virtual optimization, while removing the limitations of physical testing. Exhaust flow and acoustic simulations with the Lattice-Boltzmann Method (LBM) have been shown accurate as well as feasible within the product design cycle timing. Using noise sources detection techniques, such as Flow-Induced Noise Detection (FIND), understanding the noise generation mechanism associated to the optimal designs is also possible to orient future design decisions. In this study, after validating the ability of the approach at capturing flow noise and whistles, a characterization of the bracket design connecting tailpipe and muffler is performed to minimize the risk of whistle in the final product.
机译:排气系统是减少源自在每个烧制周期上释放的流动波动的燃烧发动机噪声的必要解决方案。然而,排气系统也会产生对发动机效率的背压。必须控制该背部压力以确保发动机的最佳操作条件。为了满足最佳操作条件和最佳噪声水平,排气系统的内部设计变得复杂,通常导致由湍流流动在消声器内循环产生的不期望的噪声的出现。制造过程所需的相关细节,例如部件之间连接的括号,可以与流动相互作用,产生额外的流量噪声或吹口哨。为了最大限度地减少不良噪声的风险,必须尽早评估多种排气设计,以防止在设计和制造过程被冻结时,预防问题的晚期检测。然而,通过实验方法设计是具有挑战性的。由于施工过程尚不存在,但物理原型缺乏与制造相关的细节。此外,实验优化是耗时的,因为每个设计迭代都需要新的物理原型,从而增加成本和发展时间,或限制探索的设计空间。或者,可以使用虚拟优化探索较大的设计空间,同时删除物理测试的限制。使用Lattice-Boltzmann方法(LBM)的排气流和声学模拟已被证明可以准确,也可以在产品设计循环定时中进行准确。使用噪声源检测技术,例如流量引起的噪声检测(查找),了解与最佳设计相关的噪声生成机制也是可以定向未来的设计决策。在该研究中,在验证捕获流动噪声和口哨处的方法的能力之后,执行连接尾管和消声器的支架设计的表征,以最小化最终产品中哨子的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号