首页> 外文会议>SAE World Congress Experience >Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays
【24h】

Large-Eddy Simulation of Turbulent Dispersion Effects in Direct Injection Diesel and Gasoline Sprays

机译:直喷式柴油和汽油喷雾中湍流分散效应的大涡模拟

获取原文

摘要

In most large-eddy simulation (LES) applications to two-phase engine flows, the liquid-air interactions need to be accounted for as source terms in the respective governing equations. Accurate calculation of these source terms requires the relative velocity “seen” by liquid droplets as they move across the flow, which generally needs to be estimated using a turbulent dispersion model. Turbulent dispersion modeling in LES is very scarce in the literature. In most studies on engine spray flows, sub-grid scale (SGS) models for the turbulent dispersion still follow the same stochastic approach originally proposed for Reynolds-averaged Navier-Stokes (RANS). In this study, an SGS dispersion model is formulated in which the instantaneous gas velocity is decomposed into a deterministic part and a stochastic part. The deterministic part is reconstructed using the approximate deconvolution method (ADM), in which the large-scale flow can be readily calculated. The stochastic part, which represents the impact of the SGS flow field, is assumed to be locally homogeneous and isotropic and, therefore, governed by a Langevin-type equation. The model is applied to the spray G and spray H conditions defined by the engine combustion network (ECN) group. Simulation results are compared with the available experimental data for spray characteristics such as penetration rates, mixture fraction profile, and droplet velocity and Sauter mean diameter (SMD) distributions. Simulations with no dispersion and the commonly used RANS-type stochastic model are also performed for comparison purposes. Results show that the turbulent dispersion has a considerable impact on quantitative spray characteristics such as projected liquid volume (PLV) fraction, droplet SMD and velocity, and fuel vapor mixture fractions. On the other hand, the macroscopic spray characteristics such as liquid- and vapor-phase penetrations are not significantly affected by the dispersion modeling. The proposed SGS model also improves the prediction of spray and ignition characteristics at the spray conditions studied in this work.
机译:在大多数大涡模拟(LES)应用到两相发动机流动中,需要在相应的控制方程中被占作为源术语的液态空气相互作用。准确计算这些源术语要求通过液滴相对速度“看到”,因为它们在流过流动时,通常需要使用湍流分散模型估计。在文献中,LES中的湍流分散模型非常稀缺。在对发动机喷射流动的大多数研究中,湍流色散的子网格刻度(SGS)模型仍然遵循最初提出的雷诺平均海军斯托克斯(RANS)的同一随机方法。在该研究中,配制了SGS分散模型,其中瞬时气体速度被分解成确定性部分和随机部件。使用近似解卷积法(ADM)重建确定性部分,其中可以容易地计算大规模的流量。表示SGS流场的影响的随机部分被认为是局部均匀的和各向同性的,因此由Langevin型方程管辖。该模型应用于喷射G和由发动机燃烧网络(ECN)组定义的喷射H条件。将仿真结果与用于喷射特性的可用实验数据进行比较,例如穿透速率,混合物分数曲线和液滴速度和露水速度直径(SMD)分布。对于没有分散和常用的RAN型随机模型的模拟也用于比较目的。结果表明,湍流分散体对定量喷射特性具有相当大的影响,例如突出的液体体积(PLV)馏分,液滴SMD和速度,以及燃料蒸气混合物级分。另一方面,诸如液相和气相渗透的宏观喷射特性不会受到分散建模的显着影响。所提出的SGS模型还改善了在本工作中研究的喷雾条件下的喷雾和点火特性的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号