首页> 外文会议>International ESAFORM Conference on Material Forming >A Meta-Model Based Approach for Rapid Formability Estimation of Continuous Fibre Reinforced Components
【24h】

A Meta-Model Based Approach for Rapid Formability Estimation of Continuous Fibre Reinforced Components

机译:基于元模型的连续纤维增强部件快速成形性估算方法

获取原文

摘要

Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is con
机译:由于其高机械性能,连续纤维增强塑料(COFRP)对承载结构越来越重要。在许多情况下,制造COFRP包括纺织品的成形过程。为了预测和优化组件的成形行为,应用数值模拟。然而,对于最大部分质量,几何和过程参数都必须在相互关键上匹配,这反过来需要众多数值昂贵的优化迭代。在纺织和金属成型中,许多研究都集中在确定最佳过程参数上,而几何形状是不变的。在这项工作中,提出了一种基于元模型的组件级别的方法,其基于预先采样的物理的覆盖数据提供了对可变几何形状的可成形性的快速估计。最初,几何识别算法扫描几何形状并提取具有相关的几何参数的一组双曲面区域。如果相关参数空间不是基础数据库的一部分,则根据适用于计算机实验的合适设计表绘制了通过有限元悬垂模拟的附加样本。节省了物理模拟的并行运行加速了数据采集。最终,从数据库构建了高斯回归元模型。该方法在盒形通用结构上证明。预测结果与基于物理学的悬垂模拟吻合良好。由于建立的元模型的评估是数值廉价的,因此可以在短时间内进行任何进一步的设计探索(例如鲁棒性分析或设计优化)。预计该方法还提供了沿着虚拟流程链的未来应用的潜力:对于沿着链的每个过程步骤,可以设置元模型,以预测设计变化对可制造性和部分性能的影响。因此,该方法是骗局

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号