首页> 外文学位 >Design and Development of Glass-Fibre-Reinforced Polymer and Ultra-High-Performance Fibre-Reinforced Concrete Guideway Girders
【24h】

Design and Development of Glass-Fibre-Reinforced Polymer and Ultra-High-Performance Fibre-Reinforced Concrete Guideway Girders

机译:玻璃纤维增​​强聚合物和超高性能纤维增强混凝土导轨的设计与开发

获取原文
获取原文并翻译 | 示例

摘要

An innovative design for prefabricated rail guideway girders is developed and validated. The proposed concept uses compositely acting glass-fibre-reinforced polymer (GFRP) and ultra-high-performance fibre-reinforced concrete (UHPFRC), achieving a girder that is 30% lighter than state-of-the-art prestressed concrete designs. Questions regarding the structural behaviour of compositely acting GFRP--UHPFRC are addressed through prototyping and experimental studies. A robust structural connector for GFRP--UHPFRC, which can be fabricated during the same vacuum infusion process that produces the GFRP shell, is developed and tested. The tensile fatigue behaviour of UHPFRC is characterized through a series of direct tension cyclic tests, showing that for peak cyclic tensile stress below 7.5MPa, there is no progressive damage to the UHPFRC. The intrinsic damping of UHPFRC is investigated through a series of free-vibration tests, demonstrating that a loss factor of eta = 0.04 is typical for UHPFRC under tensile cyclic loading, with higher values possible under reversed cyclic and short-duration loading. The unprecedented lightness of the proposed guideway, together with the high strength of GFRP, means that serviceability and fatigue limit states govern the dimensioning of the girders. This calls for a rational means of assessing the vibration response of the guideway system, from the points of view of passenger comfort and girder fatigue life. A frequency-domain method for the analysis of train-girder interaction dynamics is developed and presented. Relative to existing analysis methods, this approach eliminates the need for Monte Carlo simulation of random track irregularities, and allows for rapid assessment of the effects of long-term deformations.
机译:预制铁路导轨大梁的创新设计得到开发和验证。提出的概念使用复合作用的玻璃纤维增​​强聚合物(GFRP)和超高性能纤维增强混凝土(UHPFRC),使梁的重量比最新的预应力混凝土设计轻30%。有关复合作用的GFRP-UHPFRC的结构行为的问题已通过原型设计和实验研究解决。开发并测试了用于GFRP-UHPFRC的坚固结构连接器,该连接器可以在生产GFRP外壳的同一真空灌注过程中制造。通过一系列直接拉伸循环试验来表征UHPFRC的拉伸疲劳行为,结果表明,对于低于7.5MPa的峰值循环拉伸应力,不会对UHPFRC进行任何破坏。通过一系列自由振动测试研究了UHPFRC的固有阻尼,这表明UHPFRC在拉伸循环载荷下典型的损耗因子为eta = 0.04,在反向循环和短时载荷下,损耗系数可能更高。拟议中的导轨前所未有的轻巧,加上GFRP的高强度,意味着可维护性和疲劳极限状态决定了梁的尺寸。从乘客舒适度和大梁疲劳寿命的角度出发,这就需要一种合理的方法来评估导轨系统的振动响应。提出并提出了一种分析列车-大梁相互作用动力学的频域方法。相对于现有分析方法,此方法无需进行随机轨道不规则性的Monte Carlo模拟,并允许快速评估长期变形的影响。

著录项

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Civil engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号