首页> 外文会议>International Conference on Topical Problems of Continuum Mechanics >Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua
【24h】

Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

机译:薄壁结构与声学介质相互作用的建模,如约束二维连续

获取原文

摘要

The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called "thin layer hypothesis". Thus, the shell-wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua-A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions "shifted" from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton-de Donder-Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.
机译:声媒体和弹性壳的瞬态相互作用被认为是过渡函数方法的基础上。三维双曲线初始边界值问题减少到壳理论与积分算近似在壳动力学声学介质作用的二维问题。这些积分算子将所述核由声波衍射的问题中的具有相同的边界形状润湿壳表面的刚性障碍的基本溶液中测定。用于任意凸障碍物的封闭形式的基本解可以在位于所谓的“薄层假说”的背景中的初始交互阶段而获得。因此,通过用积分算的分析确定内核积分 - 微分动态方程限定的壳波相互作用模型变得因此二维但在时间上非定域。在另一方面,在初始阶段的相互作用导致局部动态载荷,并因此在需要较高阶壳理论复杂应变和应力状态。这里I.N.Vekua-A.A.Amosov型的修饰理论分析连续动力学方面的制定。壳模型被构建在一组从所述边界条件以下字段变量,拉格朗日密度,和约束方程内的二维流形“平移”从壳体面到其底表面。这种方法允许一个统一的正式的层次结构中构建一致的低阶壳模型。第N阶壳理论的方程单独扰动和含有相对于第二阶偏导数的时间和表面的坐标,而一阶方程组的数值积分是更有效的。这样的系统可以作为汉密尔顿德唐德-外尔型方程拉格朗日动力系统来获得。初等第N阶壳理论的哈密顿制剂这里简单说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号