首页> 外文会议>International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy >Future Catalyst Approaches for Electrochemical Energy Storage and Conversion
【24h】

Future Catalyst Approaches for Electrochemical Energy Storage and Conversion

机译:电化学能量存储和转换的未来催化剂方法

获取原文

摘要

3.1 INTRODUCTION Widespread deployment of renewable energy has been the indispensable strategy for addressing the issues resulting from the constant use of fossil fuel, such as global climate change, energy security, and sustainability. Among the available renewable energy sources, solar and wind are probably the most abundant and readily accessible, which have been considered as essential components of the future global energy portfolio [1]. However, the nature of solar and wind energy is random and intermittent. Efficient and economic energy storage and conversion technologies are required to harvest and utilize inexpensive renewable energy [2]. Among others, electrochemical energy technologies such as fuel cells and metal-air batteries can provide a temporary medium to store and release electricity when and where it is needed. Importantly, this electrochemical processes could be reversed via the oxidation or reduction of active species so as to convert chemical energy into electrical energy. Polymer electrolyte fuel cells (PEFCs) represent one of the most promising energy conversion technologies for a wide variety of applications (e.g., transportation, portable, and stationary applications), including several advantages over gasoline combustion, such as better overall fuel efficiency and reduction in CO_2 and other emissions. Meanwhile, metal-air batteries can provide significantly enhanced energy densities over traditional lithium-ion batteries. Unlike the traditional intercalation electrodes used in Li-ion batteries, the porous oxygen cathode in the metal-air cell is capable of taking reactant O_2 from the atmosphere, instead of storing bulky reactants in the electrode. As a result, the battery has significantly improved specific energy density. For example, the theoretical energy density of Li-O_2 batteries reach 5200 Wh kg~(-1), the highest value today among studied electrochemical energy devices [3]. Thus, it has high promise to meet and exceed the battery targets set for automotive applications (1700 Wh kg~(-1), derived from the practical energy density of gasoline) [4,5].
机译:3.1简介广泛部署可再生能源是解决源于持续使用化石燃料,如全球气候变化,能源安全和可持续性的不可或缺的策略。在可用的可再生能源中,太阳能和风也可能是最丰富且易于访问的,已被认为是未来全球能源组合的基本组成部分[1]。然而,太阳能和风能的性质是随机和间歇性的。收获有效和经济储能和转换技术,并利用廉价的可再生能源[2]。其中,诸如燃料电池和金属电池的电化学能量技术可以提供临时介质,以何时何地存储和释放电力。重要的是,这种电化学方法可以通过氧化或减少活性物种来反转,以将化学能转化为电能。聚合物电解质燃料电池(PEFC)代表各种应用(例如,运输,便携和静止应用)的最有希望的能量转换技术之一,包括与汽油燃烧的若干优点,例如更好的整体燃料效率和减少CO_2和其他排放。同时,金属电池可以在传统的锂离子电池上提供显着增强的能量密度。与在锂离子电池中使用的传统插入电极不同,金属 - 空气电池中的多孔氧阴极能够从大气中取出反应物O_2,而不是将笨重的反应物存放在电极中。结果,电池具有显着提高的特定能量密度。例如,Li-O_2电池的理论能量密度达到5200WH kg〜(-1),所研究的电化学能量装置中的最高值[3]。因此,它具有很高的承诺,以满足和超过用于汽车应用的电池目标(1700 WH kg〜(-1),来自汽油的实际能量密度[4,5]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号