首页> 外文学位 >Carbon Nanocomposite Catalysts for Sustainable Electrochemical Energy Conversion
【24h】

Carbon Nanocomposite Catalysts for Sustainable Electrochemical Energy Conversion

机译:碳纳米复合催化剂,用于可持续的电化学能转化

获取原文
获取原文并翻译 | 示例

摘要

Oxygen electrocatalysis, namely the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as polymer electrolyte membrane fuel cells (PEMFCs), water electrolyzers, reversible fuel cells, and metal--air batteries. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g., Pt or Ir) limit the sustainable commercialization of these highly innovative and in-demand technologies. Development of highly active and stable bifunctional ORR and OER catalysts from earth-abundant elements is a grand challenge in electrochemical energy conversion.;The major contributions of this dissertation are: (1) establishment of a structure property relationship of Fe-N-C based electrocatalyst and subsequent optimization to achieve high ORR activity in acid and alkaline media. (2) Development of a review to deepen the knowledge of physicochemical properties of perovskite oxide catalysts relevant to their bifunctional ORR and OER activity. (3) Development of transition metal derived carbon nanocomposite catalysts with high ORR and OER activity and exceptional electrochemical stability successively meeting the milestones set by the US Department of Energy.;In this dissertation, first, we have extensively focused on understanding ORR on a widely studied Fe-N-C based catalyst in both acid and alkaline media. Structures and morphologies of Fe-N-C catalysts are crucial for overall catalyst performance for the ORR. Unfortunately, the relevant understanding is still lacking for their rational design. By employing multiple nitrogen/carbon precursors, including polyaniline (PANI), dicyandiamide (DCDA), and melamine (MLMN), catalyst morphology and structure were optimized in terms of the maximum catalyst activity and stability. Going beyond previously-studied single precursors, a synergistic effect was explored by using multiple precursors during the synthesis. In particular, the best performing Fe-N-C catalyst derived from PANI and DCDA is superior to individual PANI and DCDA-derived ones. Multiple key factors associated with density of active sites are elucidated including the optimal pore size distribution, highest electrochemically active surface area, presence of dominant amorphous carbon, and thick graphitic carbon layers with more pyridinic nitrogen doped at edge sites.;Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. We have discussed the state-of-the-art understanding of the physiochemical properties of perovskites with regard to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. Some strategies are also summarized relating to the role of surface redox chemistry and oxygen deficiency in perovskite oxides in order to further improve their performance for the ORR/OER.;The major hurdle facing perovskite oxides in their poor electrical conductivity and low surface areas, which have limited their ORR and OER activity to a great extent. In contrast, carbon catalysts have many obvious advantages including low cost, high electrical conductivity, high surface area, easy surface functionalization, and processibility. The most important contribution of this dissertation is the development of nitrogen doped large sized graphene tubes (>500 nm) decorated with FeCoNi alloy particles as electrocatalysts with excellent ORR and OER activity and electrochemical durability over a wide potential window (0 to 1.9 V) in alkaline media. Moreover, the electrochemical durability of the catalyst was further improved by introducing Mn and optimizing its molar ratio relative to Fe, Co and Ni. In addition to FeCoNiMn metal alloys/oxides, the carbon composites comprise a substantial carbon tube forest growing on a thick and dense graphitic substrate. The dense carbon substrate with high degree of graphitization results from Mn doping, while active nitrogen-doped carbon tubes stems from FeCoNi. Catalyst structures and performance are greatly dependent on the Mn content. Various accelerated stress tests (AST) and life tests verifies the encouraging ORR/OER stability of the nanocarbon composite catalyst with optimal Mn doping. Extensive characterization before and after AST elucidates the stability enhancement mechanism, which is attributed to (i) unique hybrid carbon nanostructures with enhanced resistance to oxidation and (ii) in-situ formation of beta-MnO2 and FeCoNi-based oxides capable of preventing carbon corrosion and promoting activity. Note, the improvement in stability due to Mn doping is accompanied by slight activity loss.
机译:氧气电催化,即氧气还原反应(ORR)和氧气析出反应(OER),支配着许多电化学能量系统的性能,例如聚合物电解质膜燃料电池(PEMFC),水电解槽,可逆燃料电池和金属-空气电池。然而,这两个反应的动力学缓慢以及它们对昂贵的贵金属催化剂(例如,Pt或Ir)的依赖性限制了这些高度创新和需求技术的可持续商业化。从地球上富集的元素开发出高活性和稳定的双功能ORR和OER催化剂是电化学能量转换的一个巨大挑战。本论文的主要贡献是:(1)建立Fe-NC基电催化剂的结构性质关系。随后的优化,以在酸性和碱性介质中实现高ORR活性。 (2)进行综述,以加深与钙钛矿氧化物催化剂的双功能ORR和OER活性相关的理化性质的认识。 (3)开发出具有高ORR和OER活性以及优异的电化学稳定性的过渡金属衍生的碳纳米复合催化剂,这些催化剂相继满足了美国能源部设定的里程碑。首先,我们广泛地致力于对ORR的广泛了解。在酸性和碱性介质中研究了基于Fe-NC的催化剂。 Fe-N-C催化剂的结构和形态对于ORR的整体催化剂性能至关重要。不幸的是,对于它们的合理设计仍然缺乏相关的理解。通过使用多种氮/碳前体,包括聚苯胺(PANI),双氰胺(DCDA)和三聚氰胺(MLMN),就最大的催化剂活性和稳定性优化了催化剂的形态和结构。除了先前研究的单一前体之外,通过在合成过程中使用多种前体来探索协同效应。尤其是,源自PANI和DCDA的性能最好的Fe-N-C催化剂要优于单个PANI和DCDA衍生的催化剂。阐明了与活性位点密度相关的多个关键因素,包括最佳的孔径分布,最高的电化学活性表面积,主要的无定形碳的存在以及在边缘位点掺杂了更多吡啶金属氮的厚石墨碳层。出现了双功能钙钛矿氧化物作为在碱性介质中进行氧电催化的新型高效非贵金属催化剂(NPMC)。关于钙钛矿在碱性介质中的OER / ORR活性,我们讨论了钙钛矿的理化性质的最新技术,并综述了氧化物表面上的相关反应机理以及最近文献中开发的相关活性描述符。还总结了一些与钙钛矿氧化物中表面氧化还原化学和缺氧的作用有关的策略,以进一步改善其在ORR / OER中的性能。钙钛矿氧化物的导电性差和表面积低是其面临的主要障碍。在很大程度上限制了他们的ORR和OER活动。相反,碳催化剂具有许多明显的优点,包括低成本,高电导率,高表面积,易于表面官能化和可加工性。本论文的最重要贡献是开发了用FeCoNi合金颗粒装饰的掺氮大型石墨烯管(> 500 nm)作为电催化剂,在宽电位窗口(0至1.9 V)下具有出色的ORR和OER活性以及电化学耐久性。碱性介质。此外,通过引入Mn并优化其相对于Fe,Co和Ni的摩尔比,进一步提高了催化剂的电化学耐久性。除FeCoNiMn金属合金/氧化物外,碳复合材料还包括在厚而致密的石墨基底上生长的大量碳管林。 Mn掺杂导致石墨化程度高的致密碳衬底,而活性氮掺杂碳管则来自FeCoNi。催化剂的结构和性能很大程度上取决于Mn的含量。各种加速应力测试(AST)和寿命测试验证了具有最佳Mn掺杂的纳米碳复合催化剂令人鼓舞的ORR / OER稳定性。 AST前后的广泛表征阐明了稳定性增强机制,这归因于(i)具有增强的抗氧化性的独特杂化碳纳米结构,以及(ii)原位形成能够防止碳腐蚀的β-MnO2和FeCoNi基氧化物和促进活动。注意,由于Mn掺杂而导致的稳定性的改善伴随着轻微的活性损失。

著录项

  • 作者

    Gupta, Shiva.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemical engineering.;Materials science.;Energy.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号