首页> 外文会议>Progress In Electromagnetic Research Symposium >Plasmonic nanoring devices for micro- and nanoparticle trapping and detection using low incident laser powers
【24h】

Plasmonic nanoring devices for micro- and nanoparticle trapping and detection using low incident laser powers

机译:具有低入射激光功率的微型和纳米颗粒捕获和检测的等离子体纳米装置

获取原文

摘要

Trapping and detection of micro- and nano-objects at low incident laser powers in the near-infrared region (NIR) is crucial for many biological applications. Using a conventional optical tweezer method, trapping is limited to dielectric particles larger than 100nm in size with high incident laser powers. For this reason, plasmonic nanostructures, which have recently attracted research attentions, offered enhanced trapping fields at their resonant wavelengths, and subsequently can be used to trap and detect silica dielectric particles down to 12nm and single 3.4nm bovine serum albumin proteins using low incident powers (<; 1mW). In this work, we propose a design consisting of nanodisk and nanohole arrays on a 50 nm gold thin film. We demonstrate that this tunable nano-plasmonic device toward the NIR range can improve both the trapping field enhancement and detection of nano-objects using the singular phase drop methods. The tunability of the device was investigated from extinction and reflection spectra while increasing the aperture size in the arrays. The ellipsometric parameters were used to study the dark topologically-protected position, where a rapid change in phase can occur. Our experimental data suggests that, using this abrupt phase change, one can improve the detection sensitivity 10 times compared to the conventional extinction spectra method. In order to investigate the capability of trapping submicron particles with low incident laser powers, we integrated the nano-plasmonic device into a standard optical tweezer system. Stable trapping, with the capability of two-dimensional manipulation of 500 nm fluorescent polystyrene particles over large ranges for seveal minutes, was demonstrated using low incident laser powers of less than 500 μW at 950 nm. The optical trap stiffness and trapping efficiencies of these nanostructured plasmonics devices were experimentally analyzed. The experimental observation shows that stronger optical submicron particle traps can be achieved with approximately 20 times lower incident power when compared to the conventional optical tweezer method.
机译:在近红外区域(NIR)中的低入射激光功率下微型和纳米物体的捕获和检测对于许多生物学应用至关重要。使用传统的光学镊子方法,诱捕仅限于具有高于100nm的介电颗粒,具有高入射激光功率。因此,最近吸引了研究关注的等离子体纳米结构在它们的共振波长下提供增强的捕获场,随后可用于捕获和检测二氧化硅介电颗粒,使用低入射功率将二氧化硅介电颗粒降至12nm和单个3.4nm牛血清白蛋白蛋白(<; 1MW)。在这项工作中,我们提出了一种由纳米型磁盘和纳米孔阵列组成的设计,在50nm金薄膜上。我们证明,这种可调谐的纳米等离子体装置朝向NIR范围可以使用奇异相位滴方法改善捕获场增强和纳米物体的检测。从消光和反射光谱研究了器件的可调谐性,同时增加了阵列中的孔径尺寸。椭圆测量参数用于研究深色拓扑保护的位置,其中可能发生阶段的快速变化。我们的实验数据表明,与传统的消光光谱法相比,使用该突变相变,可以提高检测灵敏度10次。为了研究捕获具有低入射激光功率的亚微米粒子的能力,我们将纳米等离子体装置集成到标准光学镊子系统中。稳定的捕获,具有500nm荧光聚苯乙烯颗粒的二维操纵,在950nm处小于500μw的低入射激光功率来证明在Seapept的大范围内。实验分析了这些纳米结构型血管型装置的光学阱刚度和捕获效率。实验观察表明,与传统光学镊子方法相比,可以通过大约20倍的入射电力实现更强的光学亚微粒捕集器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号