首页> 外文会议>Conference on Design-Process-Technology Co-optimization for Manufacturability X >Estimate Design sensitivity to process variation for the 14nm node
【24h】

Estimate Design sensitivity to process variation for the 14nm node

机译:估算设计敏感性对14nm节点的处理变化

获取原文
获取外文期刊封面目录资料

摘要

Looking for the highest density and best performance, the 14nm technological node saw the development of aggressive designs, with design rules as close as possible to the limit of the process. Edge placement error (EPE) budget is now tighter and Reticle Enhancement Techniques (RET) must take into account the highest number of parameters to be able to get the best printability and guaranty yield requirements. Overlay is a parameter that must be taken into account earlier during the design library development to avoid design structures presenting a high risk of performance failure. This paper presents a method taking into account the overlay variation and the Resist Image simulation across the process window variation to estimate the design sensitivity to overlay. Areas in the design are classified with specific metrics, from the highest to the lowest overlay sensitivity. This classification can be used to evaluate the robustness of a full chip product to process variability or to work with designers during the design library development. The ultimate goal is to evaluate critical structures in different contexts and report the most critical ones. In this paper, we study layers interacting together, such as Contact/Poly area overlap or Contact/Active distance. ASML-Brion tooling allowed simulating the different resist contours and applying the overlay value to one of the layers. Lithography Manufacturability Check (LMC) detectors are then set to extract the desired values for analysis. Two different approaches have been investigated. The first one is a systematic overlay where we apply the same overlay everywhere on the design. The second one is using a real overlay map which has been measured and applied to the LMC tools. The data are then post-processed and compared to the design target to create a classification and show the error distribution.
机译:在寻找最高密度和最佳性能,14nm技术节点看到了激进设计的开发,设计规则尽可能接近过程的限制。边缘放置错误(EPE)预算现在是更紧密的,并且掩模版增强技术(RET)必须考虑最高数量的参数,以获得最佳可印刷性和保证的收益率要求。叠加是一个参数,必须在设计库开发期间之前考虑到,以避免设计结构呈现出高性能失败的风险。本文介绍了一种方法,考虑到整个过程窗口变化的覆盖范围和抗蚀剂图像仿真,以估计设计敏感性覆盖。设计中的区域分为特定度量,从最高到最低覆盖灵敏度。该分类可用于评估全芯片产品的稳健性,以处理变异性或在设计图书馆开发期间与设计人员合作。最终目标是评估不同环境中的关键结构,并报告最关键的结构。在本文中,我们研究了相互作用的层,例如接触/多区域重叠或接触/有效距离。 ASML-Brion工具允许模拟不同的抗蚀剂轮廓并将叠加值施加到其中一个层。然后将光刻制造性检查(LMC)检测器设置为提取所需的分析值。已经调查了两种不同的方法。第一个是系统覆盖,我们在设计上应用了相同的叠加层。第二个是使用已经测量并应用于LMC工具的真实覆盖图。然后将数据进行后处理并与设计目标进行比较,以创建分类并显示错误分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号