【24h】

ALL-2D SEMICONDUCTOR/METAL CONTACTS

机译:All-2D半导体/金属触点

获取原文

摘要

First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS_2/Ti_2C and MoS_2/Ti_2CY_2 (Y = F and OH) semiconductor/ metal contacts. Strong chemical bonds are formed at the MoS_2/Ti_2C interface and result in additional states around the Fermi level, which extend over the three atomic layers of MoS_2 and induce a metallic character. The interaction in MoS_2/Ti_2CY_2, on the other hand, is weak and not sensitive to the geometry, and the semiconducting nature of MoS_2 is preserved. The energy level alignment implies a weak and strong n-type doping of MoS_2 in contact with Ti_2CF_2 and Ti_2C(OH)_2, respectively, with corresponding Schottky barrier heights of 0.85 and 0.26 eV. We show that the MoS_2/ Ti_2CF_2 contact is close to the Schottky limit, whereas at the MoS_2/Ti_2C(OH)_2 contact we obtain a strong dipole due to charge rearrangement. The weak interaction between MoS_2 and Ti_2CY_2 can be interpreted as physisorp-tion. As a consequence, the electronic properties of the Ti_2CY_2 subsystem are hardly changed, in particular the characteristic metallicity. The conduction and valence bands largely maintain their characters, with the CBM and VBM still being located at the K point, though the interaction enhances the band gaps by 0.13 and 0.16 eV, respectively. These increments mainly can be ascribed to the lattice compression of 1.3%. Taking the vacuum level as reference value, we can align the energy levels of the two hybrid systems to get detailed insight into the CBM and VBM shifts in MoS_2 upon physi-sorption. The lattice compression induces shifts of the VBM and CBM by 0.15 and 0.29 eV, respectively. We find the Fermi level in MoS_2/Ti_2CF2 only 0.06 eV above the midgap, (CBM+VBM)/2, suggesting weakly n-type doped MoS_2, while it is much closer to the CBM in MoS_2/Ti_2C(OH)_2, indicating stronger doping. This gives rise to a flexible approach to realize n-type doping of MoS_2 by 2D material contacts. The investigated interfaces therefore are well suited for application in all-2D devices.
机译:第一原理计算用于探索的几何形状,粘接,和二硫化钼/ Ti_2C和二硫化钼/ Ti_2CY_2的电子特性(Y = F和OH)半导体/金属的接触。在二硫化钼/ Ti_2C界面处形成,并导致周围的费米能级的附加状态,它们延伸过二硫化钼的三个原子层并诱导金属特性强的化学键。在二硫化钼/ Ti_2CY_2的相互作用,在另一方面,弱和几何不敏感,二硫化钼的半导体性质将被保留。的能级排列意味着分别Ti_2CF_2和Ti_2C(OH)_2,接触二硫化钼的弱的和强的n型掺杂,与对应的0.85和0.26 eV的肖特基势垒高度。我们表明,二硫化钼/ Ti_2CF_2接触接近极限肖特基,而在二硫化钼/ Ti_2C(OH)2的接触,我们得到一个强大的偶极由于电荷重排。二硫化钼和Ti_2CY_2之间的弱相互作用可以解释为physisorp-重刑。其结果是,该Ti_2CY_2子系统的电子特性几乎不发生变化,特别是特性金属丰。导带和价带基本上保持它们的字符,并具有CBM和VBM仍然位于在K点,尽管相互作用0.13和0.16 eV的增强了带隙,分别。这些增量主要可以归因于1.3%晶格压缩。以真空能级为基准值,我们可以对准两个混合系统的能量水平,以获得详细的洞察CBM和VBM位移在二硫化钼时physi-吸附。的VBM和CBM的晶格压缩诱导移由分别为0.15和0.29电子伏特。我们发现在二硫化钼/ Ti_2CF2只有0.06电子伏特的中间带隙的上方,(CBM + VBM)/ 2的费米能级,提示弱n型掺杂二硫化钼,而它是更接近CBM在二硫化钼/ Ti_2C(OH)_2,指示更强的兴奋剂。这产生了一种灵活的方法由2D材料接触以实现二硫化钼的n型掺杂。所研究的接口因此在所有-2D的装置非常适合于应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号