首页> 外文会议>US National Combustion Meeting >Quantification of Molecular Structure Impact on Combustion Properties for Synthetic Diesel Fuel: 2,6,10-Trimethyldodecane
【24h】

Quantification of Molecular Structure Impact on Combustion Properties for Synthetic Diesel Fuel: 2,6,10-Trimethyldodecane

机译:分子结构对合成柴油燃料燃烧性能的影响:2,6,10-三甲基二甲烷

获取原文

摘要

Global combustion characteristics of synthetic diesel fuel, 2,6,10-trimethyldodecane (TMD) has been investigated experimentally by measuring extinction limits of diffusion flames at 1 atm and reflected shock ignition delays at 20 atm. Derived cetane number (DCN) of TMD is measured as 59.1, thus similar global combustion characteristics have been speculated between TMD and the previously studied S-8 POSF 4734 and its surrogate. Identical high temperature reacitivities have been found both in diffusion flame extinction and ignition delay times. However, it has been found that S-8 POSF 4734 surrogate has the faster ignition delay times than TMD at temperatures below 870 K. To elucidate this difference, chemical function group analysis has been performed and it has identified that the methyl to methylene ratio plays important role in the low temperature reactions, particularly for high DCN fuel mixtures. To verify this, a mixture of n-hexadecane and iso-cetane has been also tested by measuring both diffusion flame extinction limits and reflected shock ignition delay times. The result confirms the importance of methy to methylene ratio as a matching condition. The behavior of TMD and the n-hexadecane/iso-cetane mixture for both diffusion flame extinctions and reflected shock ignition delays over the entire temperature conditions considered are identical. Further numerical analysis has been conducted based on ignition delay calculations for the stoichiometric fuel/air mixture at 850 K and 20 atm. The numerical results demonstrate that the ignition delay times of all tested n-alkane/iso-alkane mixtures can be correlated with the methyl to methylene ratio, which controls the initial fuel oxidation pathways in the formation of QOOH and OH radicals. The results in this study suggest that TMD needs more careful assessment of its global reactivity when only the DCN is used. The measured DCN fails to distinguish the unique characteristics of low temperature reaction of the tested fuel when it approaches a numerical value of 60.
机译:通过测量在1个ATM的扩散火焰的消光限制和反射20atm的反射点火延迟,通过实验研究了合成柴油燃料的全局燃烧特性。 TMD的衍生十六烷数(DCN)被测量为59.1,因此在TMD和先前研究的S-8 POSF 4734和其替代物之间已经推出了类似的全局燃烧特性。在扩散火焰消光和点火延迟时间内发现了相同的高温重新曝光。然而,已经发现,S-8 POSF 4734替代物具有比在870k的温度下的温度下的点火延迟时间更快。为了阐明这种差异,已经进行了化学功能组分析,并确定了甲基对亚甲基比率的差异在低温反应中的重要作用,特别是对于高DCN燃料混合物。为了验证这一点,还通过测量扩散火焰消光限制和反射冲击点火延迟时间来测试N-十六烷烷和异甲烷的混合物。结果证实了甲基对亚甲基的重要性作为匹配条件。在考虑的整个温度条件下,TMD和N-十六烷/异甲烷/异甲烷混合物对扩散火焰灭绝和反射休克点火延迟的行为是相同的。基于850k和20atm的化学计量燃料/空气混合物的点火延迟计算进行了进一步的数值分析。数值结果表明,所有测试的N-烷烃/异烷烃混合物的点火延迟时间可以与甲基与亚甲基的甲基相连,这控制QOOH和OH基团形成的初始燃料氧化途径。本研究中的结果表明,当使用DCN时,TMD需要更加仔细的全局反应性评估。测量的DCN由于在接近60的数值时,不能区分测试燃料的低温反应的独特特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号