...
首页> 外文期刊>Fuel >Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity
【24h】

Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity

机译:先进柴油机燃烧操作和燃料配方对烟灰纳米结构和反应性的影响

获取原文
获取原文并翻译 | 示例

摘要

Advanced diesel combustion, accomplished via a single pulse fuel injection and high levels of exhaust gas recirculation (referred to as "PCCI", partially-premixed charge compression ignition), is shown to be a path to reduce oxides of nitrogen and particulate matter simultaneously. This is well established in the literature. Less established is the extent to which such dilute combustion processes influence soot formation and affect soot that is emitted from diesel engines under such combustion modes. This work focuses on characterization of the nanostructure and oxidative reactivity of soot generated by a light-duty turbodiesel engine operating under a PCCI combustion mode, a dilute, low-temperature combustion process. Previous work on a type of PCCI combustion, referred to as high-efficiency clean combustion (HECC), showed soot samples having a fullerenic nanostructure, characterized by high levels of tortuosity of the fringe layers as seen in transmission electron micrograph images and as quantified using an image processing algorithm. Thermogravimetric analysis of the HECC mode soot samples showed that they displayed higher rates of oxidation than soot samples from a conventional diesel combustion mode. The present work returns to PCCI combustion, considering the timing of the main fuel injection, and the effects of operating on fuels rich in n-alkanes, particularly a fuel produced from a low temperature Fischer-Tropsch process (LTFT) and a renewable diesel fuel (RD) produced via hydrodeoxygenation of a plant oil. PCCI combustion conditions yield soot that shows higher reactivity compared to soot from the conventional combustion mode regardless of fuel type. LTFT and RD fuels produce soots with lower reactivity compared to ULSD. Soots produced from PCCI combustion have higher surface oxygen concentration and higher proportion of amorphous carbon. In addition, TEM images show that PCCI soots from all three fuels have smaller primary particle and particle aggregate sizes, and smaller graphene layers. These properties explain the higher reactivity of soot from PCCI combustion. The less reactive soots, which are produced from LTFT and RD fuel under conventional combustion, show internal burning during oxidation. However, soots with higher reactivity which are produced from late injection PCCI combustion and ULSD show shrinking core oxidation, likely because of their overall amorphous structure.
机译:通过单个脉冲燃料喷射和高水平的排气再循环(称为“PCCI”,部分预混合电荷压缩点火)完成的先进柴油燃烧被示出为同时减少氮气和颗粒物质的氧化物的路径。这在文献中得到了很好的成熟。较少的建立是这种稀释燃烧过程影响烟灰地形成并影响从这种燃烧模式下从柴油发动机发射的烟灰。该工作侧重于在PCCI燃烧模式下操作的轻型涡轮机发动机产生的烟灰纳米结构和氧化反应性,稀释,低温燃烧过程。以前的工作方法是一种PCCI燃烧,称为高效清洁燃烧(HECC),显示出具有饱和纳米结构的烟灰样本,其特征在于透射电子显微照片图像中看到的边缘层的高水平曲折性,并且如定量使用一种图像处理算法。 HECC模式烟灰样品的热重分析显示它们从传统柴油燃烧模式中显示出比烟灰样品更高的氧化速率。考虑到主要燃料喷射的时序,目前的工作返回到PCCI燃烧,以及在富含N-烷烃的燃料上操作的影响,特别是由低温费 - 托工艺(LTFT)和可再生柴油燃料产生的燃料(RD)通过植物油的加氢脱氧产生。 PCCI燃烧条件产生烟灰,与燃料模式相比,与燃料不同的烟灰相比,与烟灰相比,与燃料型相比。与ULSD相比,LTFT和RD燃料产生具有较低反应性的肉溶液。由PCCI燃烧产生的煤果具有较高的表面氧浓度和更高比例的无定形碳。此外,TEM图像表明,来自所有三种燃料的PCCI烟灰具有较小的主要颗粒和颗粒骨料尺寸和较小的石墨烯层。这些性质解释了PCCI燃烧的烟灰的较高反应性。在常规燃烧下由LTFT和RD燃料生产的较少的反应燃点,显示出在氧化过程中的内部燃烧。然而,由晚注射PCCI燃烧和ULSD产生的反应性具有更高的反应性,并且可能因为它们的整体非晶结构而产生核心氧化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号