首页> 外文会议>US National Combustion Meeting >Soot formation in turbulent nonpremixed flames-comparison of ODT and DNS
【24h】

Soot formation in turbulent nonpremixed flames-comparison of ODT and DNS

机译:在湍流非增花的火焰中形成烟灰形成 - ODT和DNS的比较

获取原文

摘要

Soot formation in turbulent flames and fires in an important processes. Soot is a pollutant with adverse health effects. Its emission reduces combustion efficiency. High soot concentrations strongly impact radiative heat transfer through emission, but soot that breaks through flames results in radiative shielding. Accurate soot formation and transport models are important for correctly predicting and simulating flames and fires. Modeling these processes is challenging due to the complex chemical formation processes, and soot transport with differential diffusion relative to a flame, which dictates soot concentrations through the local temperature and composition fields the soot experiences as it is formed, grows, coagulates, and oxidizes. Detailed simulations of soot formation have highlighted the importance of differential transport on soot concentrations. However, detailed simulations (e.g., DNS) have high computational costs and are prohibitive for practical configurations such as fires. The one-dimensional turbulence model (ODT) is able resolve a full range of length and timescales and solves the evolution of diffusive and reactive scalars in the natural physical coordinate, essentially resolving flame structures in one dimension. The model is computationally affordable and has been successfully applied to a wide range of reacting flows. We present results of soot formation in ODT and compare the model directly to simulation results from DNS. The configuration is a temporally-evolving planar ethylene jet flame, which is an ideal configuration for comparison with the ODT model, Detailed combustion models for ethylene are applied along with a four step soot model using the method of moments with three transported moments. The same models are used in the DNS and ODT. Comparisons between the models are made for the mean jet evolution along with mean and fluctuating profiles in the physical and flame coordinates. The limitations of ODT in capturing only flame-normal transport (no flame curvature) are explored. Validation of the ODT model in this configuration will lend confidence in extending the model to configurations for which detailed temperature-velocity-composition data are not available, as well as extensions to three-dimensional versions consisting of coupled ODT lines that allow simulation of more complex configurations. Successful validation would also allow for the use of ODT as a DNS surrogate under parameter spaces (i.e., high Reynolds number) not available to DNS, or to provide statistical information at lower computational cost. These data could be used to great effect for subgrid model development and validation.
机译:在动荡的火焰中形成烟雾,并在一个重要的过程中发射。烟灰是一种患有不良健康影响的污染物。其排放减少了燃烧效率。高烟灰浓度强烈冲击辐射热传递通过发射,但烟灰通过火焰突破导致辐射屏蔽。精确的烟灰形成和传输模型对于正确预测和模拟火焰和火焰非常重要。模拟这些过程由于复杂的化学形成方法而挑战,并且具有相对于火焰的差异扩散的烟灰传输,其通过局部温度和组成田决定烟灰浓度,烟灰经历,因为它形成,生长,凝结物和氧化。烟灰形成的详细模拟突出了差速器对烟灰浓度的重要性。然而,详细的模拟(例如,DNS)具有高的计算成本,并且对诸如火灾等实际配置令人望而却步。一维湍流模型(ODT)能够解决全系列的长度和时间尺度,并解决自然物理坐标中的扩散和反应标量的演变,基本上在一个维度中解析火焰结构。该模型是计算地经济实惠的,已成功应用于各种反应流。我们在ODT中呈现烟灰形成的结果,并将模型直接与DNS的模拟结果进行比较。该构造是一个时间演化的平面乙烯射流火焰,其是与ODT模型进行比较的理想配置,使用具有三个运输时刻的矩的方法,乙烯的详细燃烧模型与四步烟灰模型一起施加。在DNS和ODT中使用相同的型号。模型之间的比较是用于平均喷射进化以及物理和火焰坐标中的平均和波动的曲线。探索ODT在捕获火焰正常运输(没有火焰曲率)时的局限性。在这种配置中验证ODT模型将借助将模型扩展到不可用的配置,以及由允许模拟更复杂的耦合ODT线的三维型号的扩展配置。成功的验证还允许在DNS的参数空间(即,高雷诺数)下使用ODT作为DNS代理,或者以较低的计算成本提供统计信息。这些数据可用于基础模型开发和验证的巨大效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号