首页> 外文会议>US National Combustion Meeting >Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames
【24h】

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames

机译:甲烷 - 氧气逆向扩散火焰中的造型离子和电子谱

获取原文

摘要

Charged species formed in a laminar counterflow diffusion flame of methane and oxygen enriched air are studied numerically. Mole fractions of major individual charged species are predicted using a one-dimensional counterflow diffusion flame model. The Cantera software and the laminar counterflow flame model is used to solve one-dimensional conservation equations of reactive flows to obtain the spatial profiles of velocity, the mole fractions and the temperature in the steady state. The distance between the two nozzles is kept at 2 cm. A detailed transport model and a 65 step mechanism involving 11 charged species in addition to the 208 step methane-air combustion mechanism with neutral species is used to model the electrical properties of the flame. Strain rate is changed from 10s~(-1) to 90s~(-1) in steps of 10s~(-1) by adjusting the mass fluxes of the fuel and oxidizer. The oxygen content in the oxidizer is varied from 21% to 100%. The effects of strain rate and oxygen content variation on the charged species profiles are comparatively analyzed. Electrons and H_3O~+ appear to be the most dominant negative and positive charged particles respectively. OH~- is found to be the most dominant species amongst the negative ions. The increase in oxygen content from 21% to 100% causes approximately twofold increase in both the electron and H_3O~+ concentrations. The maximum concentration of electrons increases from 1.4·10~(11) cm~(-3) to 2.8·10~(11) cm~(-3) by increasing oxygen content in the oxidizer from 21% to 100% respectively. Also the maximum concentration of H_3O~+ increases from 1.8·10~(10) cm~(-3) to 2.4·10~(10) cm~(-3) by increasing oxygen content in the oxidizer from 21% to 100% respectively. The maximum concentration of OH~- increases from 10~9 cm~(-3) to 7·10~9 cm~(-3). The total negative charged species excluding the electrons as well the total positive ions are computed and it is shown that the amount of negative ions is negligible as compared to the positive ions and the electrons are the most dominating negatively charged particles. The computational results obtained through this solution need to be verified with experimental data.
机译:在数值上研究了在层状逆向甲烷和富氧空气中形成的带电物种。使用一维反流扩散火焰模型预测主要单个带电物质的摩尔分数。 Cantera软件和层流逆流火焰模型用于解决反应流的一维保存方程,以获得速度,摩尔分数和稳态温度的空间谱。两个喷嘴之间的距离保持在2cm。除了208步甲烷 - 空气燃烧机理外,还使用具有中性物质的208步甲烷 - 空气燃烧机理的详细传输模型和65步机构用于模拟火焰的电性能。通过调节燃料和氧化剂的质量助熔剂,应变速率从10S〜(-1)的步长,从10S〜(-1)变为90〜(-1)。氧化剂中的氧含量从21%变化至100%。相对分析了应变率和氧含量变化对带电物质曲线的影响。电子和H_3O〜+似乎分别是最大的负负荷粒子。哦〜 - 被发现是负离子中最占主导地位的物种。氧含量的增加从21%到100%导致电子和H_3O〜+浓度的大致两倍增加。通过将氧化剂中的氧含量分别增加21%至100%,通过增加21%至100%,最大电子浓度从1.4·10〜(11)cm〜(-3)增加到2.8·10℃至2.8·10〜(11)。通过将氧化剂中的氧含量增加到100%至100%,还通过将氧含量增加至1.4·(-3),从1.8·10〜(10)cm〜(-3)增加到2.8·10〜(10)cm〜(-3)的最大浓度。分别。 OH〜 - - 从10〜9cm〜(-3)增加至7·10〜9cm〜(-3)的最大浓度。不包括电子的总负荷物质也是计算的总正离子,并且示出与正离子相比,负离子的量可忽略不计,并且电子是负荷的颗粒最大的负极负荷粒子。通过该解决方案获得的计算结果需要用实验数据进行验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号