首页> 外文会议>SAE AeroTech Congress Exhibition >Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study
【24h】

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

机译:可重新配置的装配系统设计方法:机翼组装案例研究

获取原文

摘要

Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of RAS. In this paper, a novel RAS design methodology is specified to address the design complexity. The methodology is a holistic, hierarchical approach to system design which integrates reconfigurability principles, Axiomatic Design and Design Structure Matrices. A wing assembly case study is used to illustrate how the methodology translates reconfigurability requirements into a system that is scalable and flexible from the outset. The resultant reconfigurable cell design assembles the wing's spars and ribs with ramp-up capability from 40 to 100 aircraft per month. Cell designs are presented as CATIA models. The data used is CAD data from a current single aisle wing. Production data is sourced from current single aisle assembly.
机译:处理大型复杂结构的当前装配系统在提高操作性能方面存在许多挑战。具体地,航空航天组装系统包括一种以无数方式相互作用的大量相互关联的元件,导致了一个深刻的复杂过程,需要一个多学科的工程师团队。目前增压生产率的方法涉及建立额外的主装配夹具,这些夹具需要大的投资和最长24个月的额外数量。在空中客车操作中,有要求提高装配系统的容量和灵活性,从而减少了不经常性的成本和上市时间。最近的趋势,提高制造敏捷倡导者可重新配置的装配系统(RAS)作为可行的解决方案。然而,向组装系统添加重新配置性进一步增加了操作和设计复杂性。尽管可重新配置组件的复杂性增加,但很少有一些正式的方法或框架专门存在支持RA的设计。本文规定了一种新的RAS设计方法来解决设计复杂性。该方法是一种整体,分层方法,用于系统设计,它集成了重新配置原理,公理设计和设计结构矩阵。机翼组装案例研究用于说明方法如何将可重新配置性要求转换为从一开始就可以缩放和灵活的系统。由此产生的可重新配置的细胞设计将机翼的翼梁和肋骨组成,每月从40到100架飞机的增加能力。细胞设计作为CATIA模型呈现。使用的数据是来自当前单个过道翼的CAD数据。生产数据来自当前单通道组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号