首页> 外文会议>Materials Research Society Meeting >Synthesis of Nanocarbons Using a Large Volume AC Plasma Reactor
【24h】

Synthesis of Nanocarbons Using a Large Volume AC Plasma Reactor

机译:使用大体积交流等离子体反应器合成纳米碳

获取原文

摘要

There is an opportunity for scaling up, optimizing, and controlling the process of production of nanoparticles due to their numerous diverse applications. We present a system for continuous, high rate production of nanoparticles, particularly those of carbon, using large volume thermal plasma based on a three-phase diverging electrode configuration. The goal of using this 3-phase plasma reactor is to have a plasma arc that is scalable, self-stabilizing, and low maintenance, with sufficient plasma volume to maximize residence time of feed materials for evaporation to atomic species. Plasma carrier gas, typically inert gas such as helium, is injected into the reactor allowing the vaporization of any feedstock due to plasma temperatures >5000 °C. Controlling plasma enthalpy, diffusion/temperature gradients and carbon feed rates allow the controlled growth of clusters leading to nanoparticles less than 100 nm. Once the desired size is achieved the gas stream is expanded to reduce the reaction rate and quenched by natural cooling to chamber walls or injection of a cooling gas stream, preferably of the same composition as plasma carrier gas. Recoverable yields in the nanoparticle-laden gas stream are then isolated by standard means (filtration, cyclone separation, electrostatic precipitation), and the plasma gas and unreacted feedstock are routed to the plasma reactor for recycling. Computational Fluid Dynamics (CFD) is employed to measure and predict fluid flow, energy/temperature, and other species distributions in the plasma process.
机译:由于其许多不同的应用,有机会缩放,优化和控制纳米颗粒的生产过程。我们在基于三相发散电极构造的基于三相发散电极构造的大容量热等离子体,提供了一种用于连续的,高速率的纳米颗粒生产的系统,特别是碳的系统。使用该三相等离子体反应器的目的是具有可扩展,自稳定和低维护的等离子体弧,具有足够的等离子体体积,以使饲料材料的停留时间最大化以蒸发到原子物种。等离子体载气通常是惰性气体,例如氦气,注入反应器中,允许由于等离子体温度> 5000℃蒸发任何原料。控制等离子体焓,扩散/温度梯度和碳进料率允许导致纳米颗粒的簇的受控生长,其小于100nm。一旦达到所需的尺寸,将气流扩大以降低反应速率并通过自然冷却到室壁或注射冷却气体流,优选与等离子体载气的相同组成。然后通过标准方法(过滤,旋风分离,静电沉淀)分离纳米粒子 - 载载气流中的可恢复产率,并且血浆气体和未反应的原料被赋予等离子体反应器进行再循环。计算流体动力学(CFD)用于测量和预测等离子体过程中的流体流动,能量/温度和其他物种分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号