首页> 外文会议>Workshop on Corrosion Modeling for Life Prediction >Continuum damage model for biodegradable Magnesium alloy stent
【24h】

Continuum damage model for biodegradable Magnesium alloy stent

机译:可生物降解镁合金支架的连续损伤模型

获取原文

摘要

The main drawback of conventional stenting procedure is the high risk of restenosis. The idea of a stent that "disappears" after having fulfilled its mission is very intriguing and fascinating. The stent mass should diminishing in time to allow the gradual transmission of the mechanical load to the surrounding tissues. Magnesium and its alloys seem to be among the most appealing materials to design biodegradable stents. The objective of this work is to develop, in a finite element (FE) framework, a model of magnesium degradation able to predict the corrosion rate and thus providing a valuable tool to design biodegradable stents. Continuum damage approach is suitable for modelling different damage mechanisms, including several types of corrosion. Corrosion is modelled by a scalar damage field which accounts for the material strength loss due to geometrical discontinuities. As damage progresses, the material stiffness decreases. Corrosion damage results as the superposition of stress corrosion process and uniform corrosion. The former describes the stress-mediated localization of the corrosion attack through a stress-dependent evolution law similar to the one used in analytical models, while the latter affects the free surface of the material exposed to an aggressive environment. The effects of both phenomena described are modelled through a linear composition of the two specific damage evolution laws. The model, developed in a FE framework, manages the mesh dependency, typical of strain-softening behaviour, including the FE characteristic length in the damage evolution law definition. The developed model is able to reproduce the behaviour of different magnesium alloys subjected to static and slow-strain-rate corrosion tests. Moreover, 3D stenting procedures accounting for the interaction with the arterial vessel are simulated.
机译:常规支架程序的主要缺点是再狭窄的高风险。在满足其使命后,一块支架的想法是非常有趣和令人迷人的。支架质量应及时减少,以允许逐渐将机械负载逐渐传递到周围组织。镁及其合金似乎是设计可生物降解支架最吸引人的材料之一。这项工作的目的是在有限元(FE)框架中开发,一种能够预测腐蚀速率的镁劣化模型,从而为设计可生物降解支架提供有价值的工具。连续um损伤方法适用于建模不同的损伤机制,包括几种类型的腐蚀。腐蚀是由标量损伤领域的建模,其由于几何不连续性而占材料强度损失。由于损坏进展,材料刚度降低。腐蚀损伤导致压力腐蚀过程的叠加和均匀腐蚀。前者描述了通过与分析模型中使用的压力依赖的演化法律的压力介导的腐蚀攻击定位,而后者会影响暴露于侵袭性环境的材料的自由表面。描述的两种现象的效果是通过两种特定损伤的损伤法律的线性组成来建模的。该模型在FE框架中开发,管理典型的应变软化行为的网格依赖性,包括损伤进化法定义中的FE特征长度。开发的模型能够再现经受静态和慢速率腐蚀试验的不同镁合金的行为。此外,模拟了与动脉血管相互作用的3D支架程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号