首页> 外文学位 >Microstructural Evolution and Mechanical Properties of Zn-Ti Alloys for Biodegradable Stent Applications.
【24h】

Microstructural Evolution and Mechanical Properties of Zn-Ti Alloys for Biodegradable Stent Applications.

机译:用于可生物降解支架的Zn-Ti合金的微观结构演变和力学性能。

获取原文
获取原文并翻译 | 示例

摘要

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction melting. The experimental approach was to analyze the effect of Ti alloying element addition on mechanical properties of zinc. The structure, mechanical properties and fractography of the as-cast alloys were investigated.;It was found that the grain size was reduced from above 600 microm to ~23 microm with the Ti content increasing from 0.01 wt% to 0.3 wt%. The amount of the intermetallic phase increased from 0.3 wt% to 2.5 wt% with Ti content. The results identify the formation of a eutectic phase of zinc with intermetallics at the primary grain boundaries. Zn16Ti was identified as the intermetallic phase formed in the as-cast Zn-Ti alloys. With increasing Ti content from 0.01 wt% to 1 wt%, the ultimate tensile strength and yield strength of the as cast Zn-Ti alloys increased from 101 and 64 MPa to 177 and 122 MPa, respectively. It is proposed that the strength of as-cast Zn-Ti alloys increases with the Ti content increasing from 0.01 wt% to 0.3 wt% due to grain refinement from a small percentage of titanium. The amount of the intermetallic phase increased with the Ti content increasing from 0.3 wt% to 2.5 wt%. It is proposed that the hardness and strength of the as-cast Zn-Ti alloys increased with the Ti content increasing from 0.3 to 2.5 wt% due to the increased formation of Zn-Ti intermetallic phases. The low elongation of the as-cast Zn-0.3 wt% Ti (3%), Zn-0.5 wt% Ti (4%), and Zn-1 wt% Ti alloys (2%) was also attributed to the increasing content of Zn-Ti intermetallic phases.;Based on the results of the structure and mechanical properties of as-cast Zn-Ti alloys, the most promising as-cast candidates were processed through hot extrusion. This phase study was focused on the structure-property relationships before and after hot extrusion. The as-extruded Zn-0.01 wt% Ti had the highest average ultimate tensile strength and yield strength of 269 and 177 MPa, respectively. It is proposed that a significant increase in the ultimate tensile strength and yield strength in Zn-0.01 wt% Ti alloy after hot extrusion is due to grain refinement and formation of precipitates. The as-extruded Zn-0.1 wt% Ti and Zn-0.3 wt% Ti alloys exhibited high ductility, with the elongation to failure of about 44% and 30%, respectively. It is proposed that the as-extruded Zn-0.1 wt% Ti alloy exhibited high ductility due to the grain refinement and grain shape adjustment after hot extrusion. The high elongation of the as-extruded Zn-0.1 wt% Ti and Zn-0.3 wt% Ti alloys is consistent with the microstructural observations of ductile fracture. The as-extruded Zn-0.1 wt% Ti alloy had the best combination of tensile mechanical properties (UTS=207 MPa, YS=163 MPa, and Elongation=44%), which nearly meet the mechanical requirements for stent application.
机译:由可生物降解的金属材料制成的支架在生物材料领域越来越受到关注,因为与聚合物材料相比,它们的机械性能和生物降解速率更高。在过去的五年中,已经开发并研究了锌及其合金作为可生物降解支架应用的可能候选者。这项研究旨在配制和表征一系列新的Zn-Ti合金,其中钛的添加量少于1-3 wt%,其主要目的是开发和选择一种满足可生物降解支架机械性能基准值的合金。通过真空感应熔炼配制了一系列的Zn-Ti合金。实验方法是分析添加钛合金元素对锌力学性能的影响。研究了铸态合金的结构,力学性能和形貌。发现,Ti含量从0.01 wt%增加到0.3 wt%,晶粒尺寸从600微米以上减小到〜23微米。随着Ti含量,金属间相的量从0.3重量%增加到2.5重量%。结果确定了在主要晶界处形成具有金属间化合物的锌的共晶相。 Zn16Ti被确定为铸态Zn-Ti合金中形成的金属间相。随着Ti含量从0.01 wt%增加到1 wt%,铸态Zn-Ti合金的极限抗拉强度和屈服强度分别从101和64 MPa增加到177和122 MPa。提出了由于少量钛将晶粒细化而使铸造的Zn-Ti合金的强度随着Ti含量从0.01wt%增加至0.3wt%而增加。金属间相的量随着Ti含量从0.3wt%增加到2.5wt%而增加。提出由于Zn-Ti金属间相的形成增加,铸态Zn-Ti合金的硬度和强度随着Ti含量从0.3wt%增加到2.5wt%而增加。铸态Zn-0.3 wt%的Ti(3%),Zn-0.5 wt%的Ti(4%)和Zn-1 wt%的Ti合金(2%)的低延伸率也归因于其含量的增加Zn-Ti金属间相。;基于铸态Zn-Ti合金的结构和力学性能的结果,最有希望的铸态候选物通过热挤压加工而成。该阶段研究的重点是热挤压前后的结构-性能关系。刚挤出的Zn-0.01 wt%Ti具有最高的平均极限抗拉强度和屈服强度,分别为269和177 MPa。提出热挤压后Zn-0.01wt%Ti合金的极限抗拉强度和屈服强度的显着增加是由于晶粒细化和沉淀的形成。刚挤出的Zn-0.1 wt%Ti和Zn-0.3 wt%Ti合金表现出高延展性,断裂伸长率分别约为44%和30%。有人提出,由于热挤压后的晶粒细化和晶粒形状调整,挤压后的Zn-0.1 wt%Ti合金表现出高延展性。挤压后的Zn-0.1 wt%Ti和Zn-0.3 wt%Ti合金的高伸长率与韧性断裂的显微组织观察结果一致。挤压后的Zn-0.1 wt%Ti合金具有拉伸机械性能的最佳组合(UTS = 207 MPa,YS = 163 MPa和伸长率= 44%),几乎可以满足支架应用的机械要求。

著录项

  • 作者

    Yin, Zhiyong.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Materials science.
  • 学位 M.S.
  • 年度 2017
  • 页码 83 p.
  • 总页数 83
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号