首页> 外文会议>Technical Meeting of the rubber division,American Chemical Society >New understanding of filler dispersion, interfacial interaction and mechanical strengthening of rubber nanocomposites by combining simulation and experimental studies
【24h】

New understanding of filler dispersion, interfacial interaction and mechanical strengthening of rubber nanocomposites by combining simulation and experimental studies

机译:用仿真和实验研究结合橡胶纳米复合材料的新认识,橡胶纳米复合材料的新理解

获取原文
获取外文期刊封面目录资料

摘要

Novel information about filler dispersion and flocculation, rubber-filler interfacial interaction and its mechanical strengthening is obtained by carrying out a detailed coarse-grained molecular dynamics simulation and experimental study. Firstly we probed the filler dispersion state by mainly tuning the polymer-filler interaction, and interestingly the relatively optimal dispersion is obtained for polymer-filler interaction with moderate strength. For polymer-filler interfacial interaction, the structural and dynamic properties are characterized away from the filler surface by tuning the polymer-filler interaction, filler size and filler loading. It is found that the ranges of the perturbed region of polymer chains are all confined approximately within the radius of gyration (R_g) around the filler. Moreover, the packing of the polymer chains on the filler surface is induced by the interfacial enthalpy. Remarkably, our simulated results provide conclusive evidence that the interfacial region is composed of partial segments of different polymer chains, supporting the experimental assumption from Chen et al. (Macromolecules, 2010, 43, 1076). Meanwhile, from the point of kinetics and thermodynamics, we conclude that it is impossible for polymer chains to be fully anchored on the filler surface to form the so-called "glassy layer" surrounding the filler, in contrast with the literature (Merabia et al. Macromolecules, 2008, 41, 8252). In the case of strong rubber-filler interaction (equivalent to the hydrogen bond), the interfacial chains are suppressed to some extent but still undergo the adsorption/desoprtion process, exhibiting greater dynamics than that of the glassy state. A novel percolation phenomenon is found for its mechanical strengthening, the concept of the critical particle-to-particle distance (CPPD) is put forward to uncover the mechanism, highlighting that the strength enhancement mainly originates from the formation of parallel-arraying stretched polymer chains between neighboring particles.
机译:通过进行详细的粗粒化分子动力学模拟和实验研究,获得了有关填充分散和絮凝,橡胶填料界面相互作用及其机械强化的新颖信息。首先,我们通过主要调整聚合物填料相互作用来探测填充物分散状态,并且有趣地获得了与中等强度的聚合物填料相互作用的相对最佳的分散体。对于聚合物填充界面相互作用,通过调节聚合物填料相互作用,填料尺寸和填料载荷,结构和动态性能的特征在于填充物表面。发现聚合物链的扰动区域的范围全部限制在填料周围的环状半径(R_G)内。此外,通过界面焓诱导填充表面上的聚合物链的包装。值得注意的是,我们的模拟结果提供了结论性证据,即界面区域由不同聚合物链的部分段组成,支持来自Chen等人的实验假设。 (MacromoleCules,2010,43,1076)。同时,从动力学和热力学的点,我们得出结论,聚合物链可以完全锚定在填料表面上以形成填料周围的所谓的“玻璃层”,与文献相比(Merabia等人。MacromoleCules,2008,41,8252)。在强橡胶填料相互作用(相当于氢键)的情况下,界面链在一定程度上抑制但仍然经历吸附/脱水过程,表现出比玻璃状态更大的动态。发现了一种新的渗透现象对于其机械强化,临界粒子距离(CPPD)的概念提出来揭示机制,突出强度增强主要是源自源自平行排列拉伸聚合物链的形成在邻近的粒子之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号