首页> 外文会议>International Conference on Numerical Analysis and Applied Mathematics >Interface-Dislocation Interaction on Sub-micron Scales
【24h】

Interface-Dislocation Interaction on Sub-micron Scales

机译:子微米尺度上的接口脱位交互

获取原文

摘要

Interfaces are given considerable attention in the field of nanotechnology, as many of the preferred material properties that are observed at the nanoscale are attributed to the high surface to volume ratio that is present at sub-micron scales. The optoelectronic properties of semiconductors, for example, depend on the number of dislocations that are present at the interface between the nano-sized doping elements and the matrix. In the present paper a first step is taken towards understanding the interface-dislocation interactions. The theoretical framework used is that of gradient plasticity framework, enhanced with a separate interface energy term. This interface energy depends on the plastic strain at the interface and defines an interface yield-like criterion which indicates the stress at which the interface begins to deform plastically. Experimentally this interfacial yielding is captured through nanoindentation experiments near the grain boundary of crystalline materials, namely Fe-2.2wt%Si. Fitting the theoretical analytical expression to the experimental data allows the determination of the key material parameters; for Nb it gives the internal length to be approximately 1.4μm, and in fact for pure (single phase) materials the dislocation source distance is approximated as 1.5μ m. In order to further render the interface-dislocation interactions, discrete dislocation dynamics simulations are presented for a micronscale tri-crystal with rigid/non-deforming grain boundaries. The resulting strain distribution profile from the simulation coincides with the predicted plastic strain of the gradient plasticity framework, while the best fit results when the internal length in the analytical expression is chosen to be the same as the value of the dislocation source distance used in the simulation. Hence, the gradient plasticity model that considers an interface energy term has been validated using experimental and numerical investigations.
机译:在纳米技术领域中,界面在纳米技术领域得到了相当大的关注,因为在纳米级观察到的许多优选的材料特性归因于在亚微米尺度上存在的高表面。例如,半导体的光电性质取决于存在于纳米掺杂元件和基质之间的界面处存在的位错的数量。在本文中,朝着了解界面 - 错位相互作用的第一步。所使用的理论框架是梯度塑性框架,通过单独的接口能量术语增强。该界面能量取决于界面处的塑性应变,并限定了界面产生的标准,其表示界面似乎开始变形的应力。通过实验,通过晶体材料的晶界附近的纳米凸缘实验捕获这种界面屈服,即Fe-2.2wt%Si。将理论分析表达拟合到实验数据允许确定关键材料参数;对于Nb,它使内部长度约为1.4μm,实际上对于纯(单相)材料,位错源距离近似为1.5μm。为了进一步使界面脱位相互作用,具有刚性/非变形晶界的微晶三晶体,呈现离散位错动态模拟。从模拟中得到的应变分布曲线与梯度塑性框架的预测塑性应变一致,而当分析表达中的内部长度选择相同的梯度塑性框架的预测结果与所用的位错源距离的值相同模拟。因此,考虑界面能量术语的梯度塑性模型已经使用实验和数值调查验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号