首页> 外文会议>Materials Research Society Symposium on Biosurfaces and Biointerfaces >Interactions Between Chemical Functionality and Nanoscale Surface Topography Impact Fibronectin Conformation and Neuronal Differentiation on Model Sol-Gel Silica Substrates
【24h】

Interactions Between Chemical Functionality and Nanoscale Surface Topography Impact Fibronectin Conformation and Neuronal Differentiation on Model Sol-Gel Silica Substrates

机译:化学功能与纳米级表面形貌之间的相互作用影响溶胶 - 凝胶二氧化硅基材的纤连蛋白构象和神经元分化

获取原文

摘要

Functional relationships between the biomaterial interface and extracellular matrix (ECM) proteins are intimately involved in cellular adhesion and function. Structural changes of ECM proteins upon adsorption to a surface alter the protein's biological activity by varying the availability of molecular binding sites. Recent work using native and organically modified sol-gel silica as a neuronal biointerface revealed that changes in surface nanotopography of bulk versus thin film materials result in dramatic differences in fibronectin structure, cell survival, and neuronal differentiation. In order to investigate interactions between chemical functionality and surface topography, we evaluated the global conformation of human fibronectin adsorbed to seven different organically modified silica gels and thin films. Chemical functional groups were introduced into the materials either by altering the starting precursor or by doping with poly-l-lysine or polyethylenimine. Surface topography measurements by atomic force microscopy show that films have surface features less than 25nm while bulk materials of the same precursor chemistry have features ranging from 50-100nm in size. Fluorescence resonance energy transfer spectroscopy (FRET) revealed a strong interaction between surface topography and chemical functionality. Fibronectin remain globular on all bulk materials regardless of chemical modification. The same changes in precursors or dopant chemistry, however, induced changes in the conformation of fibronectin on the thin films. The differentiation of PC 12 cells on the surface indicated a strong impact of the surface features and suggest a possible optimal fibronectin folding state.
机译:生物材料界面和细胞外基质(ECM)蛋白质之间的功能关系紧致涉及细胞粘附和功能。 ECM蛋白在吸附到表面时的结构变化改变了蛋白质的生物活性,改变了分子结合位点的可用性。最近使用本地和有机改性的溶胶 - 凝胶二氧化硅作为神经元生物接地的作用表明,散装薄膜材料的表面纳米复印件的变化导致纤连蛋白结构,细胞存活和神经元分化的显着差异。为了研究化学功能和表面形貌之间的相互作用,我们评估了吸附于七种不同有机改性的硅胶和薄膜的人纤连蛋白的全局构象。通过改变起始前体或用聚-L-赖氨酸或聚乙烯掺杂将化学官能团引入材料中。原子力显微镜的表面形貌测量表明,薄膜具有小于25nm的表面特征,而同一前体化学的散装材料具有50-100nm的特点。荧光共振能量传递光谱(FRET)揭示了表面形貌和化学功能之间的强相互作用。无论化学修饰如何,纤连蛋白都在所有散装材料上保持球状素。然而,前体或掺杂剂化学的相同变化诱导纤连蛋白在薄膜上的变化变化。 PC 12细胞在表面上的分化表明表面特征的强烈影响,并表明了可能的最佳纤维凝集素折叠状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号