首页> 外文会议>Conference on Light-Emitting Diodes >InN-on-Si heteroepitaxy: growth, optical properties, and applications
【24h】

InN-on-Si heteroepitaxy: growth, optical properties, and applications

机译:Inn-On-Si杂志:生长,光学性质和应用

获取原文

摘要

Indium nitride (InN), because of its recently discovered narrow band-gap and superior electron transport properties, has emerged as a potentially important semiconductor for use in near-infrared (NIR) optoelectronics, solar cells, and high-speed electronics. The current barrier for extensive fundamental studies and widespread applications of InN is mostly related to the growth difficulty of high-quality InN heteroepitaxial films. We have recently demonstrated that high-quality InN/AlN heterostructures can be formed on Si(111) due to the existence of "magic" ratios between the lattice constants of comprising material pairs: 2:1 (Si:Si3N4), 5:4 (AlN/Si), and 8:9 (InN:AlN). This new route of lattice matching allows the formation of commensurate interface with a common two-dimensional superlattice. For InN growth on AlN with nitrogen polarity, we found that the pseudomorphic to commensurate lattice transition occurs within the first monolayer of growth, resulting in an abrupt heterojunction at the atomic scale. At room temperature, the as-grown InN films on Si exhibit strong NIR photoluminescence with the peak energy at ~0.65 eV (wavelength at ~1.9 μm). Combined with the optical absorption measurements performed by transmission and spectroscopic ellipsometry, we confirmed that InN is a direct narrow band-gap semiconductor. Therefore, InN is a very ideal material for applications in NIR optoelectronics and solar cells, if other technological barriers (e.g., p-type doping) can also be overcome. In addition to the measurements of fundamental optical properties, a large valence band offset (3.10 eV) of type-I band alignment was also determined by photoelectron spectroscopy for the InN/AlN 8:9 commensurate heterojunction. The large band offsets and the strong polarization effects make the InN/AlN heterostructures very promising for applications in heterojunction field-effect transistors.
机译:氮化铟(INN),由于其最近发现的窄带间隙和优异的电子传输性能,因此是用于近红外(NIR)光电子,太阳能电池和高速电子的潜在重要的半导体。广泛基本研究的目前的屏障和旅馆广泛应用主要与高质量的杂志膜的生长困难相关。我们最近证明,由于晶格常数在包含材料对的晶格常数之间的存在:2:1(Si:Si3N4),5:4,可以在Si(111)上形成高质量的Inn / AlN异质结构。 (ALN / SI)和8:9(INN:ALN)。这种新的格子匹配路由允许形成具有共同的二维超晶格的相称界面。对于具有氮极性的ALN的INN增长,我们发现在第一个单层的生长中发生粘性晶格过渡的假形象,导致原子尺度的突然异质结。在室温下,Si上的AS-成长INN薄膜在〜0.65eV(波长为〜1.9μm)的峰值能量上表现出强烈的NIR光致发光。结合通过透射和光谱椭偏测量进行的光学吸收测量,我们确认了INN是直接窄带间隙半导体。因此,INN是一个非常理想的材料,用于在NIR光电子和太阳能电池中的应用,如果其他技术障碍(例如,p型掺杂)也可以克服。除了基本光学性质的测量之外,I型带对准的大型价带偏移(3.10eV)也由光电子光谱对荷载/ ALN 8:9的相称异质结来确定。大频段偏移和强偏振效应使INN / ALN异质结构非常有希望在异质结场效应晶体管中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号