首页> 外文会议>Light-Emitting Diodes: Research, Manufacturing, and Applications X >InN-on-Si heteroepitaxy: growth, optical properties, and applications
【24h】

InN-on-Si heteroepitaxy: growth, optical properties, and applications

机译:InN-on-Si异质外延:生长,光学性质和应用

获取原文
获取原文并翻译 | 示例

摘要

Indium nitride (InN), because of its recently discovered narrow band-gap and superior electron transport properties, has emerged as a potentially important semiconductor for use in near-infrared (NIR) optoelectronics, solar cells, and highspeed electronics. The current barrier for extensive fundamental studies and widespread applications of InN is mostly related to the growth difficulty of high-quality InN heteroepitaxial films. We have recently demonstrated that high-quality InN/AlN heterostructures can be formed on Si(111) due to the existence of "magic" ratios between the lattice constants of comprising material pairs: 2:1 (Si:Si_3N_4), 5:4 (AlN/Si), and 8:9 (InN:AlN). This new route of lattice matching allows the formation of commensurate interface with a common two-dimensional superlattice. For InN growth on A1N with nitrogen polarity, we found that the pseudomorphic to commensurate lattice transition occurs within the first monolayer of growth, resulting in an abrupt heterojunction at the atomic scale. At room temperature, the as-grown InN films on Si exhibit strong NIR photoluminescence with the peak energy at ~0.65 eV (wavelength at ~ 1.9 μm). Combined with the optical absorption measurements performed by transmission and spectroscopic ellipsometry, we confirmed that InN is a direct narrow band-gap semiconductor. Therefore, InN is a very ideal material for applications in NIR optoelectronics and solar cells, if other technological barriers (e.g., p-type doping) can also be overcome. In addition to the measurements of fundamental optical properties, a large valence band offset (3.10 eV) of type-Ⅰ band alignment was also determined by photoelectron spectroscopy for the InN/AlN 8:9 commensurate heterojunction. The large band offsets and the strong polarization effects make the InN/AlN heterostructures very promising for applications in heterojunction field-effect transistors.
机译:氮化铟(InN)由于其最近发现的窄带隙和出色的电子传输性能,已成为潜在的重要半导体,可用于近红外(NIR)光电,太阳能电池和高速电子产品。 InN广泛的基础研究和广泛应用的当前障碍主要与高质量InN异质外延膜的生长困难有关。我们最近证明,由于在构成材料对的晶格常数之间存在“魔术”比,因此可以在Si(111)上形成高质量的InN / AlN异质结构:2:1(Si:Si_3N_4),5:4 (AlN / Si)和8:9(InN:AlN)。这种新的晶格匹配途径允许与普通的二维超晶格形成相称的界面。对于在具有氮极性的AlN上InN的生长,我们发现从拟晶到相称的晶格跃迁发生在生长的第一个单层内,从而导致原子级的突然异质结。在室温下,Si上生长的InN薄膜具有很强的NIR光致发光特性,其峰值能量约为0.65 eV(波长约为1.9μm)。结合透射和椭圆偏振光谱法进行的光吸收测量,我们确认InN是直接的窄带隙半导体。因此,如果还可以克服其他技术障碍(例如p型掺杂),InN是用于NIR光电和太阳能电池的非常理想的材料。除了基本光学性能的测量外,还通过光电子光谱法测定了InN / AlN 8:9相称异质结的大价带偏移(3.10 eV)的Ⅰ型能带对准。大的带偏移和强大的极化效应使InN / AlN异质结构非常有希望用于异质结场效应晶体管中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号