首页> 外文会议>ASPRS Annual Conference,Prospecting for Geospatial Information Integration >A FUZZY LOGIC APPROACH TO SUPERVISED SEGMENTATION FOR OBJECTORIENTED CLASSIFICATION
【24h】

A FUZZY LOGIC APPROACH TO SUPERVISED SEGMENTATION FOR OBJECTORIENTED CLASSIFICATION

机译:对非对象分类监督分段的模糊逻辑方法

获取原文

摘要

Object-oriented classification has shown a great potential in the classification of very high resolution satellite images, such as QuickBird and Ikonos. In the object-oriented classification, object segmentation is a crucial process and it significantly influences the classification results. Current techniques heavily rely on the operator's experience to find appropriate segmentation parameters for achieving an acceptable classification result, which is a labour intensive and time consuming work. The success of the classification often depends on the knowledge and expertise of the operator. This paper presents a fuzzy logic approach to the determination of suitable object segmentation parameters leading to an improved object-oriented classification result. To obtain a set of optimum object segmentation parameters, an initial segmentation needs to be applied to the input image at a finer scale for identifying object's primitive segments. The primitive segments are then used to train the fuzzy logic system. After the training, a set of optimum segmentation parameters can be found by the fuzzy logic system, resulting in optimum classification results. This fuzzy logic approach also significantly increases the classicisation efficiency by reducing iterative, knowledge-based, interactive adjustments of segmentation parameters. Testing rests demonstrated that this approach is promising to significantly improve current object-oriented classification techniques.
机译:面向对象的分类在非常高分辨率卫星图像的分类中具有很大的潜力,例如Quickbird和Ikonos。在面向对象的分类中,对象分割是一个关键过程,它显着影响分类结果。目前的技术依赖于操作员的经验,找到适当的分割参数,以实现可接受的分类结果,这是一种劳动密集型和耗时的工作。分类的成功往往取决于运营商的知识和专业知识。本文提出了一种模糊逻辑方法,用于确定合适的对象分割参数,导致改进的面向对象分类结果。为了获得一组最佳对象分割参数,需要以更精细的比例应用初始分割,以识别对象的基元段。然后使用原始段来训练模糊逻辑系统。在训练之后,模糊逻辑系统可以找到一组最佳分割参数,从而产生最佳分类结果。这种模糊逻辑方法还通过减少分割参数的迭代,知识,交互式调整来显着提高传统效率。测试休息表明,这种方法很有希望能够显着提高当前面向对象的分类技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号