首页> 外文会议>International Conference on Environmental Management >Physical Vulnerability Analysis for Coastal Flooding in Godavari River Delta, Andhra Pradesh, India
【24h】

Physical Vulnerability Analysis for Coastal Flooding in Godavari River Delta, Andhra Pradesh, India

机译:印度河东河河三角洲沿海洪水的物理脆弱性分析

获取原文

摘要

Tropical cyclones cause a variety of damages. The major causes of damage are due to Storm surge, fierce winds, and torrential rains. Storm surge is the greatest potential threat to life, property, and coastal environment. Strong winds cause structural damages and heavy insitu /catchment's rainfall amplifies the menace of flooding. In the present study, it is attempted to study the physical vulnerability of Andhra Pradesh (AP) coast with reference to coastal flooding. The Godavari river delta region is selected as a case study for vulnerability analysis. All the 33 mandals in East Godavari (EG) district and 27 mandals in West Godavari (WG) district within Godavari delta are studied. The main objective of the study is to identify the inundated areas for most severe event in the last 50 years, if occurred at different locations along the coast of Godavari delta. Weightages are assigned to different depth of inundations depending on their capacity to affect the resources in the region. Based on the extent of inundation in different mandals, mandals are classified into different vulnerability classes. This is achieved by simulated cyclone tracks resembling the severe cyclone to cross the Godavari delta front at different locations spaced at an interval of 20 kms. The landfall time and intensity is so selected that the storm gains maximum intensity just before crossing. The landfall time is also made to coincide the spring tide to get maximum inundation. Wind fields are generated at a regular 6 hourly interval from 14th April 1999 1200UTC till 17th April 1999 0000UTC. Inundations are calculated using Delft3D flow model, in each cell of a curvilinear grid. The maximum depth of inundation for Godavari delta region is derived for each cell obtained by different storm runs. The highest maximum depth of inundation of 5.2 m. is observed in Thalleravu mandal of EG district and 3.698 in Narasapur mandal of WG district. The lowest maximum depth of inundation of 1.762 m. is observed in Kadiam mandal of EG district and 0.634 in Kalla mandal of WG district. Maximum depth of inundation is grouped into five physical vulnerability classes: 0-0.5m, 0.5-1m, 1-2m, 2-4m and 4-6m. The maximum inland penetration across Kakinada region in Eastern Godavari delta is observed to be extending up to 45 kms, and across Amalapuram region in Central Godavari delta up to 27 kms, and across Narasapur region in Western Godavari delta up to 30 kms. Suitable weightages ranging from 0.125 to 1.0 are given to the above five physical vulnerable classes based on depth of inundation. Higher the weightage is given for greater depth of ranges. The weighted vulnerable area is arrived from the product of weightage and the varying grid cell resolution. Finally, the relative vulnerability is tabulated based on the ratio of weighted vulnerable area and the total geographical area. The six classes of mandal level physical vulnerability are: Very High Vulnerable, High Vulnerable, Moderate Vulnerable, Low Vulnerable, Very Low Vulnerable, and non-vulnerable deltaic mandals.
机译:热带旋风导致各种损坏。损害的主要原因是由于风暴浪涌,凶猛的风和暴雨。风暴浪涌是对生命,财产和沿海环境的最大潜在威胁。强风引起结构损坏,重型内部/集水区的降雨放大了洪水的威胁。在本研究中,试图参考沿海洪水研究安得拉邦(AP)海岸的物理脆弱性。选择Godavari River Delta地区作为漏洞分析的案例研究。研究了东陀瓦里(EG)区的所有33个曼大尔·戈达瓦里三角洲西戈瓦里(WG)区的27个曼大尔省。该研究的主要目标是在过去50年中识别最严重事件的淹没地区,如果发生在罗阿维斯州海岸的不同地点。根据其影响该区域资源的能力,重量分配给不同的淹没深度。基于不同曼纽的洪水范围,曼大尔人分为不同的漏洞课程。这是通过模拟的旋风轨道来实现的,类似于严重旋风,以在以20公里的间隔间隔开的不同位置越过戈达瓦里三角洲前沿。面积的时间和强度如此选择,暴风雨在过境之前获得了最大强度。土地利用时间也使春潮重合以获得最大的淹没。从1999年4月14日至1999年4月17日0000UTC的常规6小时间隔产生风场。使用Delft3D流模型,在曲线网格的每个单元格中计算淹没。对于由不同风暴运行获得的每个单元来导出Godavari Delta区域的最大淹没深度。最大的最大淹没深度为5.2米。在WG区纳萨普尔·曼达尔·曼德·区的Thalleravu Mandal中观察到。最大的最大淹没深度为1.762米。在EG区的Kadiam Mandal和WG区Kala Mandal观察到。将最大淹没深度分为五种物理漏洞等级:0-0.5m,0.5〜1米,1-2米,2-4米和4-6米。在东陀达达三角洲的喀克兰达地区的最大内陆渗透率被观察到最多可延长45公里,而朝鲜市中心的阿马拉姆兰州地区,最高可达27公里,以及西罗瓦维三角洲的纳拉苏尔地区,最高可达30公里。基于淹没深度,适用于0.125至1.0的重量为上述五个物理弱势群体。较高的重量越高,较大的范围。加权弱势区域从重量和不同的网格电池分辨率到达。最后,基于加权脆弱区域和总理区域的比率制订相对漏洞。六级Mandal级别漏洞是:非常高的脆弱,高脆弱,适度的弱势伤害,低弱势伤害,非常低的弱势群体和非弱势群体的曼陀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号