首页> 外文会议>IEEE LEOS Annual Meeting Conference >Excess Noise and Avalanche Multiplication in InAlAs
【24h】

Excess Noise and Avalanche Multiplication in InAlAs

机译:在Inalas中过量的噪音和雪崩乘法

获取原文

摘要

In recent years, InAlAs avalanche photodiodes (APDs) have reported high sensitivities in high bit rate 10 Gb/s [1] and even 40 Gb/s [2] optical communication applications. InAlAs is able to supersede InP as the multiplication layer in SAM-structure APDs due to its superior ionization characteristics that include larger bandgap and very dissimilar electron and hole ionization coefficients (α and β respectively), while remaining lattice matched to InP substrates. Preliminary studies also suggest relatively small temperature dependence of breakdown voltages compared to InP, which reduces the need for temperature stabilization. The significance of a large electron and hole ionization coefficient ratio is lower excess noise and increased sensitivity, without sacrificing the gain-bandwidth product. Furthermore, InAlAs/InGaAs APDs are electron initiated, which further improves the excess noise performance [3] should there be low-field ionization in the InGaAs absorption layer [4]. Accurate characterization of the InAlAs ionization properties such as excess noise and ionization coefficients are essential when designing and optimizing the InAlAs APD performance using simulators and analytical models. It is therefore surprising that the only data on submicron avalanche structures is by Saleh et al. [5] and even this only reports on electron-initiated multiplication. We present a systematic study of avalanche multiplication and excess noise characteristics of InAlAs on a series of p{sup}+-i-n{sup}+ and n{sup}+-i-p{sup}+ diodes with nominal intrinsic region widths from 0.1 μm to 2.5 μm. The carrier threshold energies and the ionization coefficient for enabled carriers between electric fields of 220 kV/cm to 980 kV/cm are extracted by fitting to the measured electron- and hole-initiated multiplication and excess noise characteristics by using the coupled integral equations technique described by Hayat et al. [6]. The enabled electron to hole ionization coefficient ratio, as plotted in Figure 1, varies from 32.6 to 1.2 with increasing field. The large ionization coefficient ratio at low fields accounts for the asymmetry in the multiplication characteristics, and confers low excess noise in thick structures, following local theory. With decreasing thickness, the excess noise initially increases, but the competing effects of dead space become significant at high fields, and in turn cause the excess noise to then decrease rapidly. For electron-initiated multiplication, the worst excess noise occurs for avalanche widths of 0.25 - 0.5 μm, and is lowest at the extremely thin and thick structures as shown in Figure 2. The advantage of reducing the structure widths is however limited by the tunneling mechanism that dominates the leakage currents for avalanche widths less than 0.2 μm, as shown in Figure 3. Thick structures on the other hand, will increase the minimum transit time through the avalanche region, which in turn decreases the bandwidth. Hence, care is needed to optimize the thickness of the multiplication region to optimize the noise performance of the APD without sacrificing the speed and maximum achievable gain.
机译:近年来,Inalas雪崩光电二极管(APDS)已经报道了高比特率10 GB / S [1]甚至40 Gb / s [2]光通信应用的高敏感性。由于其具有较大的带隙和非常不同的电子和空穴电离系数(分别)的优异电离特性,INALAS能够将INP作为SAM结构APDS中的乘法层。与INP相比,初步研究还提出了击穿电压的相对较小的温度依赖性,这减少了对温度稳定的需求。大型电子和空穴电离系数的意义较少噪声越低,灵敏度增加,而不牺牲增益带宽产品。此外,Inalas / InGaAs APD是电子引发的,这进一步改善了过量的噪声性能[3],在InGaAs吸收层中是否存在低场电离[4]。在使用模拟器和分析模型的设计和优化Inalas APD性能时,诸如过高噪声和电离系数的Inalas电离性能的精确表征是必不可少的。因此,它令人惊讶的是,亚微米雪崩结构上唯一的数据是萨尔斯特·等人。 [5]甚至这只有关于电子引发的乘法的报告。我们对{sup} +和n {sup} + - Ip {sup} +二极管的一系列p {sup} + - In {sup} +和n {sup} +二极管提供了一个系统的雪崩乘法和过度噪声特征的系统研究到2.5μm。通过使用所描述的耦合的积分方程技术,通过拟合到测量的电子和空穴引发的乘法和过量的噪声特性,提取220kV / cm至980kV / cm之间的电场之间的载流子阈值和电离系数。由Hayat等人。 [6]。在图1中绘制的使能电子与空穴电离系数比在32.6至1.2中随着越来越多的场而变化。低场的大电离系数比占乘法特性的不对称性,并在局部理论之后赋予厚结构的低过度噪声。随着厚度的降低,过量的噪声最初增加,但死区的竞争效果在高场中变得显着,而且又会导致过量的噪声快速降低。对于电子引发的乘法,雪崩宽度为0.25-0.5μm的最差的过量噪声,并且在极薄和厚的结构下最低,如图2所示。然而,减小结构宽度的优点是受隧道机构的限制这占据了雪崩宽度小于0.2μm的泄漏电流,如图3所示。另一方面,厚的结构将通过雪崩区域增加最小的传输时间,又会降低带宽。因此,需要小心以优化乘法区域的厚度,以优化APD的噪声性能而不牺牲速度和最大可实现的增益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号