首页> 外文会议>American Gear Manufacturers Association Technical Meeting >Comparison of Tooth Interior Fatigue Fracture Load Capacity to Standardized Gear Failure Modes
【24h】

Comparison of Tooth Interior Fatigue Fracture Load Capacity to Standardized Gear Failure Modes

机译:牙齿内部疲劳骨折负载能力与标准化齿轮衰竭模式的比较

获取原文
获取外文期刊封面目录资料

摘要

Gears are case hardened to produce residual stresses at the surface, which improve wear resistance, bending, and contact fatigue strength. These compressive residual stresses are balanced by tensile stresses in the core. This poses an increased risk of fatigue crack initiation in the material below the surface. Both Tooth Flank Fracture (TFF, also known as Tooth Flank Breakage (TFB)) and Tooth Interior Fatigue Fracture (TIFF) describe a failure mode where a subsurface fatigue crack initiates in the material below the surface, approximately mid-height of the tooth. Previous research has established that the direction in which the crack progresses and the appearance of the associated fracture surface is dependent on the flank loading (i.e. single stage loading versus idler usage). This type of failure can appear at loads below the allowable loading conditions for failure modes, based on international standards (such as ISO 6336). Therefore, understanding of such failure is required at the design stage of geared transmission systems. The currently proposed approaches for the analysis of TFF and TIFF all have very similar fundamental features, consisting of four stages: calculation of stress history, calculation or specification of residual stresses, calculation of equivalent stresses using a fatigue criterion, and comparison with some initiation thresholds. MackAldener has shown that an analysis method based on two-dimensional FEA can be utilized to analyze the risk of TIFF in idler gears. However, using general FE packages requires considerable time and computational power to both set-up and run analyses. Therefore, various simplified analytical or empirical methods which reduce these requirements have been proposed in the literature. Unfortunately, these methods introduce limitations on applicability and some compromise on the accuracy of results. To overcome limitations on applicability and improve the accuracy of the results, the authors previously proposed and validated a methodology where a specialized loaded tooth contact analysis (LTCA) model is utilized to determine load boundary conditions at a selected number of points in the gear tooth mesh cycle. In contrast to a detailed FE analysis, this method allows for quick analysis times, leading to fast optimization. This study aims to improve the existing understanding of Tooth Interior Fatigue Fracture load capacity and compare calculated load capacity to the allowable loading conditions for bending and pitting fatigue failure, based on the standard calculation procedures. Possible methods that could be used to mitigate TIFF risk are presented, and the effect of these methods on the performance, with respect to the other failure modes, are quantified.
机译:齿轮是硬化的,在表面产生残余应力,可提高耐磨性,弯曲和接触疲劳强度。这些压缩残余应力通过芯中的拉伸应力平衡。这造成了表面下方材料的疲劳裂纹引发的风险增加。牙齿侧面骨折(TFF,也称为牙齿侧面断裂(TFB))和齿内部疲劳裂缝(TIFF)描述了一种破坏模式,其中地下疲劳裂纹在表面下方的材料中引发,大约牙齿的中间高度。以前的研究已经确定了裂缝进展和相关骨折表面的外观的方向取决于侧翼载荷(即单级载荷与惰轮使用)。根据国际标准(例如ISO 6336),这种类型的故障可能出现在允许的负载模式下方的允许装载条件下方。因此,在齿轮传输系统的设计阶段需要了解这种失效。目前提出的TFF和TIFF分析的方法都具有非常相似的基本特征,包括四个阶段:压力历史,剩余应力的计算或规范,使用疲劳标准计算等效应力,以及与一些发起阈值进行比较。 Mackaldener表明,基于二维FEA的分析方法可用于分析惰轮中TIFF的风险。但是,使用常规FE包需要相当多的时间和计算能力,以及运行分析。因此,在文献中提出了减少这些要求的各种简化的分析或经验方法。不幸的是,这些方法对适用性的局限性引入了对结果的准确性的局限性和一些妥协。为了克服适用性的限制,提高结果的准确性,提出的作者提出和验证了一种方法,其中用于在齿轮齿网格中选择的载荷边界条件确定负载边界条件循环。与详细的FE分析相比,该方法允许快速分析时间,导致快速优化。本研究旨在改善对牙齿内部疲劳骨折负载能力的现有理解,并根据标准计算程序将计算的负载能力与允许的负载疲劳失败进行比较。提出了可用于减轻TIFF风险的可能方法,并且这些方法对其他故障模式的性能的影响是量化的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号