【24h】

Arraying of Intact Liposomes on Chemically Functionalized Microwell Surfaces with Potential Application as Biosensors

机译:在化学官能化的微孔表面上排列完整脂质体,潜在应用作为生物传感器

获取原文
获取外文期刊封面目录资料

摘要

We are developing protocols to array individual, intact small unilamellar vesicles (liposomes) onto surfaces with potential application as biosensor probes. One potential problem in arraying of liposomes on surfaces is their tendency to unravel upon adsorption. We tackle this problem by situating liposomes inside microwells chemically functionalized to attract liposomes. The size of liposomes is matched with the size of the wells on micro-patterned surface so that only one liposome attaches into each well. The background is functionalized to resist liposome adsorption and unraveling. In the ongoing research, the surfaces used are microwell arrays with 1.2 mum diameter fabricated by Photolithography on a silicon wafer coated with silicon oxide layer. A flat block of Polydimethylsiloxane (PDMS) impregnated with Polyethylene glycol (PEG) terminated silane is used to put down a PEG-terminal background phase using Contact Printing. PEG terminated monolayers are resistant to protein/liposome adsorption. The 'bare' holes are then backfilled using amine terminal 3-Aminopropyltrimethoxysilane (APS). These amine microwells are biotinylated using NHS-PEO4-Biotin (NPB). Next Neutravidin is attached to the Biotin islands to form patterned Neutravidin arrays capable of binding more Biotin. Low Tg lipid formulations containing 5% biotinylated lipids are used to prepare liposomes of about 1 mum diameter using an Extrusion technique. The patterned Neutravidin microwell array is then exposed to the liposome solution, which results in attachment of intact liposomes into holes by 'Biotin-Neutravidin' interaction. The intactness of liposomes after attachment is verified by co localization of fluorescence from cargo incorporated inside the liposomes with the fluorescence from Neutravidin grid using Confocal Microscopy. Other steps involved in the protocol are confirmed using Atomic Force Microscopy, Fluorescence Microscopy, Particle Size Analysis, and Confocal Microscopy.
机译:我们正在通过潜在应用作为生物传感器探针,将阵列个体的方案完整为阵列个体,完整的小单层囊泡(脂质体)。在表面上排列脂质体的一个潜在问题是它们在吸附时揭开的趋势。我们通过在化学官能化的微孔内的脂质体来解决这个问题以吸引脂质体。脂质体的尺寸与微图案表面上的孔的大小相匹配,因此只有一个脂质体均附着在每个孔中。官能化以抵抗脂质体吸附和解吸。在正在进行的研究中,所使用的表面是微孔阵列,通过光刻在涂有氧化硅层的硅晶片上制造的1.2毫米直径。使用浸渍有聚乙二醇(PEG)终止硅烷的扁平聚二甲基硅氧烷(PDMS)封端的扁平块用于使用接触印刷放下PEG末端背景相位。 PEG封端的单层对蛋白质/脂质体吸附具有抗性。然后使用胺末端3-氨基丙基三甲氧基硅烷(AP)回填“裸”孔。这些胺微孔使用NHS-PEO4-Biotin(NPB)生物素化。下一个中性化素附着在生物素岛上,形成能够结合更多生物素的图案化的中性杀虫蛋白阵列。低Tg脂质制剂含有5%的生物素化脂质的制剂用于使用挤出技术制备约1毫米直径的脂质体。然后将图案化的中节瘤微滤网阵列暴露于脂质体溶液中,这导致通过“生物素 - 中华素”相互作用将完整的脂质体连接到孔中。通过从脂质体内掺入脂质体内的荧光的荧光的CO定位验证附着后的脂质体的完整性验证,所述脂质体与中性学显微镜从中暑丝网栅的荧光。使用原子力显微镜,荧光显微镜,粒度分析和共聚焦显微镜确认了方案中涉及的其他步骤。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号