首页> 外文会议>International conference on advanced diagnostics for magnetic and inertial fusion >FAST ION LOSS DIAGNOSTIC FOR THE WENDELSTEIN 7-X STELLARATOR
【24h】

FAST ION LOSS DIAGNOSTIC FOR THE WENDELSTEIN 7-X STELLARATOR

机译:WENDELSTEIN 7-X螺栓恒定的快速离子损失诊断

获取原文
获取外文期刊封面目录资料

摘要

An important issue of future reactor-like fusion devices is the confinement of fusion born alpha particles required for a burning plasma. A fast ion loss diagnostic, like proposed here, could be an adequate diagnostic tool to study the fast ion confinement properties of W7-X and, thus, could confirm at least one of the 7 optimization criteria given in Ref. The objectives of such measurements can be classified into 3 categories: (ⅰ) The confinement of fusion alphas directly depends on the magnetic field structure. Generally, the loss cone of the configuration should be as narrow as possible to avoid first orbit losses, otherwise alpha particle and auxiliary heating efficiency may be deteriorated. Although alpha particle confinement is expected to be sufficient in a HELIAS reactor (R = 20 m, a = 2 m), alpha particle confinement studies should be performed in W7-X (R = 5 m, a = 0.5 m) with 60 keV protons as a substitute. First orbit losses of ions injected by neutral beam heating (NBI) are caused in cases where the particle sources reside close to the lost/confined boundary in phase space or even are located inside the loss cone. Ion cyclotron heating (ICH) drives mainly perpendicular momentum of the ions, thus a transport into the loss cone is likely, (ⅱ) Even in magnetic fields with perfect ion confinement losses may occur when ions are affected by fluctuating electric and magnetic fields. Shear Alfven modes as an example are accompanied by poloidal and radial electric field oscillations that change the ion orbit trajectory, provided that particle and wave propagation are roughly in resonance. In this case, a subensemble of fast ions suffer from radial diffusion. Such modes can be excited by inverse Landau-damping with either fast ions of auxiliary heating or fusion alphas. In contrast to this, fusion alphas may be expelled from the plasma by fast ion driven modes, which could endanger reactor operation. However, if specific modes are excited in a controlled way, ion-wave interaction may be beneficial for helium ash removal. In this case, fusion alphas have to pass a resonance layer at a certain velocity during their slowdown at which enhanced radial transport is induced, (ⅲ) Knowledge about fast ion losses is also essential to improve plasma performance. Strong fluxes of suprathermal ions are an additional drive mechanism for radial electric fields. Consequently, the lost/confined boundary may changes in a positive way and plasma performance can be improved, at least for thermal ions. The fast ion loss diagnostic provides experimental evidence whether such a drive is caused by fast or thermal ions. Another important issue is the influence of impurities. Enhanced impurity concentration increases pitch angle scattering of fast ions. This leads to an enhanced diffusion in phase space, and subsequently, to increased ion loss rates. Strong ion outward fluxes are not desirable, because they cause strong local heat loads on the first wall, which are not acceptable in a steady state plasma operation. Additionally, new impurity sources are generated by sputtering or by ion impact induced desorption. Thereby, the impurity concentration is. increased and pitch angle scattering gets further enhanced leading to a non-stationary behavior in all plasma parameter.
机译:未来的反应堆融合装置的一个重要问题是燃烧等离子体所需的融合出生α颗粒的限制。如在此提出的那样,可以是研究W7-X的快速离子监禁特性的足够的离子损失诊断,因此可以确认参考文献中给出的7个优化标准中的至少一个。此类测量的目标可以分为3类:(Ⅰ)融合α的禁闭直接取决于磁场结构。通常,配置的损耗锥体应尽可能窄以避免第一轨道损失,否则α粒子和辅助加热效率可能会劣化。尽管预期α粒子限制在Helias反应器中足够(R =20μm,a = 2m),但α粒子限制性研究应在W7-x(r = 5m,a = 0.5米)中,具有60keV质子作为替代品。在粒子源位于锁定间隔空间中的丢失/狭窄边界靠近损耗锥内的情况下,引起了由中性光束加热(NBI)注入的离子的第一个轨道损失。离子回旋加热(IC​​H)驱动主要是离子的垂直动量,因此即使在通过波动电场的波动影响时可能发生具有完美离子限制损失的磁场中的输送到损耗锥体中,(Ⅱ)。作为示例的剪切alfven模式伴随着改变离子轨道轨迹的针状体和径向电场振荡,条件是颗粒和波传播大致谐振。在这种情况下,快速离子的子核遭受径向扩散。这种模式可以通过与辅助加热或融合α的快速离子进行逆RANDAU-DAMATING来激发。与此相反,融合α可以通过快速离子驱动模式从等离子体排出,这可以危及反应器操作。然而,如果以受控方式激发特定模式,则离子波相互作用可能是有益的氦灰灰。在这种情况下,融合alphas必须在其放缓期间在一定速度下通过谐振层,其诱导增强的径向传输,(Ⅲ)关于快速离子损失的知识也是提高等离子体性能的必要性。上空离子的强助焊剂是径向电场的额外驱动机构。因此,丢失/限制的边界可以以正面的方式改变,并且至少可以改善等离子体性能,至少用于热离子。快速离子损失诊断提供了这种驱动器是否由快速或热离子引起的实验证据。另一个重要问题是杂质的影响。增强的杂质浓度增加了快速离子的俯仰角散射。这导致相位空间和随后的增强扩散,以增加离子损失率。强离子外向通量不希望,因为它们在第一壁上导致强大的局部热载,这在稳态等离子体操作中不可接受。另外,通过溅射或通过离子冲击引起的解吸产生新的杂质来源。由此,杂质浓度是。增加和俯仰角散射进一步增强导致所有等离子体参数中的非静止行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号