...
首页> 外文期刊>Journal of instrumentation: an IOP and SISSA journal >Startup impurity diagnostics in Wendelstein 7-X stellarator in the first operational phase
【24h】

Startup impurity diagnostics in Wendelstein 7-X stellarator in the first operational phase

机译:在第一阶段,Wendelstein 7-X恒星仪的启动杂质诊断

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An essential element for stationary stellarator operation is the understanding of the impurity transport behavior. Neoclassical theory predicts an impurity transport towards the plasma core for the standard ion root regime in stellarators [1, 2]. The performance of a quasi-stationary device like Wendelstein 7-X stellarator (W7-X, presently in the commissioning phase in Greifswald, Germany) could be limited in case of strong impurity accumulation. Therefore, a set of plasma diagnostics is foreseen to obtain key experimental quantities for the neoclassical transport modeling as ion temperature profile, density gradients and impurity concentration [3]. The core impurity content is monitored by the High Efficiency eXtreme ultraviolet Overview Spectrometer system (HEXOS) [4], covering the wavelength range 2.5–160 nm (intermediate ionization states of all relevant heavy intrinsic impurity species) with high spectral resolution and a time resolution of 1 ms, adequate for transport analysis. Impurity radiation at shorter wave lengths (4 nm–0.06 nm) will be monitored with the SX pulse height analysis system (PHA) [5]. The ion temperature profile can be deduced from inversion of data from the High Resolution X-ray Imaging Spectrometer (HR-XIS), which measures the concentration and temperature of argon tracer gas in helium-like ionization stages [6–8]. A second X-ray Imaging Crystal Spectrometer (XICS), which will additionally provide the poloidal ion rotation velocity, is under preparation [8, 9]. The total radiation will be measured by two bolometer cameras [10, 11]. The status of the impurity diagnostics for the first operational phase in W7-X is summarized in this paper and an outlook for the next experimental campaign is given.
机译:固定恒星运行的基本要素是对杂质传输行为的了解。新古典理论预测,对于恒星中的标准离子根态,杂质向等离子体核的迁移[1,2]。诸如Wendelstein 7-X恒星仪(W7-X,目前处于德国格赖夫斯瓦尔德的调试阶段)之类的准平稳设备的性能可能会因大量杂质积累而受到限制。因此,可以预见要进行一系列的等离子体诊断,以获得新古典传输模型的关键实验量,如离子温度曲线,密度梯度和杂质浓度[3]。核心杂质含量由高效高效极紫外概述光谱仪系统(HEXOS)监控[4],涵盖了2.5–160 nm的波长范围(所有相关重质固有杂质的中间电离状态),具有高光谱分辨率和时间分辨率1 ms,足以进行传输分析。 SX脉冲高度分析系统(PHA)将监控较短波长(4 nm–0.06 nm)处的杂质辐射[5]。离子温度曲线可以通过高分辨率X射线成像光谱仪(HR-XIS)的数据反演推导出,该仪测量类氦气电离阶段中氩气示踪气体的浓度和温度[6-8]。正在准备第二个X射线成像晶体光谱仪(XICS),它将另外提供倍性离子旋转速度[8,9]。总辐射将由两个辐射热测量相机[10,11]测量。本文总结了W7-X中第一个操作阶段的杂质诊断状态,并给出了下一个实验计划的展望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号