首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >CONTROL ANALYSIS OF A 3D SELF-BALANCING INVERTED PENDULUM AND CART SYSTEM FOR STABILITY IN THE EVENT OF A SENSOR FAILURE
【24h】

CONTROL ANALYSIS OF A 3D SELF-BALANCING INVERTED PENDULUM AND CART SYSTEM FOR STABILITY IN THE EVENT OF A SENSOR FAILURE

机译:传感器故障发生稳定性3D自平衡倒立摆和车辆系统的控制分析

获取原文

摘要

This paper studies and simulates the dynamics and controls for a two-wheeled robotic chassis that successfully and consistently self-balances. Previous approaches to similar models have derived their dynamics from first principles using Newtonian mechanics for a linearized, shared-axle system and Lagrangian mechanics for a linearized, independently-actuated system. As such, the derived dynamics do not often reflect important factors of real world models which are not linear. However, this study specifically focuses on a more complicated system with independently-actuated wheels, for which a sophisticated and realistic dynamic model is derived using non-linearized Lagrangian mechanics. The pendulum and cart movements are each assumed to be planar, and their planes of motion are defined perpendicular to each other. The system's performance is then analyzed in the simulation environment to determine the effect of various controllers and filters in cases of full and partial state feedback with and without sensor noise. Performance is characterized in terms of pendulum angle relative to the vertical axis and cart trajectory relative to the ground plane, both of which are functions of the voltage-applied force on each wheel independently. A comparison of the results shows that the non-linearized Lagrangian model best fits the true data and yields less uncertainty given a sensor failure. Therefore, the presented study has high intellectual merits compared to existing studies which focus on only linearized models. Based on the deterministic parameters of this study's non-linearized model, a recommendation is made about which combination of controllers and filters best maintains the system's stability in the event of a sensor failure returning only partial state feedback.
机译:本文研究和模拟动力学和控制的两轮机器人的底盘,成功地和始终如一的自我平衡。先前的方法类似的模型已经使用了线性化,共享车轴系统和拉格朗日力学用于线性化,独立地致动的系统牛顿力学第一原理得出它们的动态。因此,得到的动态不经常反映这不是线性的现实世界模型的重要因素。然而,这项研究特别注重与独立地致动的车轮,一个复杂的和现实的动态模型是使用非线性化的拉格朗日力学针对衍生的更复杂的系统。摆和车的运动分别假定为平面的,并且它们的运动平面被相互垂直的限定。然后,该系统的性能进行了分析在仿真环境,以确定各种控制器和过滤器中的具有和不具有传感器噪声全部和部分状态反馈的情况下的效果。性能的特征在于,相对于摆角方面,以垂直轴和车相对于地平面的轨迹,这两者都是电压施加的力的函数对每个车轮独立地。的结果表明,该非线性化拉格朗日模型最适合的真实数据和产率较低的不确定性给定的传感器故障的比较。因此,所提出的研究具有比现有的研究,其只专注于线性模型高智力的优点。基于此研究的非线性化的模型的参数的确定性,推荐由关于哪个控制器和过滤器的组合最好保持在一个传感器故障只返回部分状态反馈的情况下,系统的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号