首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >Design and simulation of shaped comb fingers for compensation of mechanical restoring force in tunable resonators
【24h】

Design and simulation of shaped comb fingers for compensation of mechanical restoring force in tunable resonators

机译:可调谐谐振器机械恢复力补偿成型梳状手指的设计与仿真

获取原文
获取外文期刊封面目录资料

摘要

The comb-drive actuator is one of the main building blocks of microelectromechanical systems (MEMS). Its working principle is based on an electrostatic force that is generated between biased conductor plates as one moves relative to the other. Because of its capability of force generation, it finds wide application in micro-mechanical systems. Sample applications include polysilicon microgrippers [1], scanning probe devices [2], force-balanced accelerometers [3], actuation mechanisms for rotating devices [4], laterally oscillating gyroscopes [5], and RF filters [6]. Consequently, any improvement to this basic actuator could have far-reaching effects. Specifically, we are interested in shaped comb finger designs which would generate force-deflection profiles that have linear shapes. These linear relationships could partially compensate for the mechanical restoring force due to the action of a linear suspension spring. This electrostatic weakening or stiffening of the mechanical spring can decrease the drive voltage of actuators or change the resonant frequency of resonators. Several previous researchers have investigated various comb shapes. Hirano et al. [7] reported techniques for fabricating fingers which could dramatically reduce the separation gap after only a short motion. These fingers were designed for maximum possible force output at a nearly constant rate. Rosa et al. [8] continued this search for high-force actuators by designing and testing actuators with angled comb fingers. Ye et al. [9] studied directly the force-deflection behavior of a number of finger designs using a two-dimensional numeric electrostatic solution. They reported designs with linear, quadratic, and cubic behavior. This work focuses on designing, modeling, and testing of shaped comb fingers with linear force profiles for use in tunable resonators. A tunable resonator designed using the principles outlined here has been designed with stiffness tuning of up to 50% at 100 V tuning voltage, compared to 4.9% stiffness tuning (for a weaker spring) in an earlier work [6]. This extended abstract describes the key points of the work.
机译:梳驱动器是微机电系统(MEMS)的主结构块之一。其工作原理基于静电力,该静电力在偏置导体板之间产生,因为一个相对于另一个移动。由于其力量产生的能力,它在微机械系统中发现了广泛的应用。样品应用包括多晶硅微血液[1],扫描探头装置[2],力平衡加速度计[3],用于旋转装置的致动机构[4],横向振荡陀螺仪[5]和RF滤波器[6]。因此,对该基本执行器的任何改进都可能具有深远的效果。具体而言,我们对成型梳理设计感兴趣,这会产生具有线性形状的力偏转轮廓。由于线性悬架弹簧的作用,这些线性关系可以部分地补偿机械恢复力。机械弹簧的这种静电弱化或加强可以降低致动器的驱动电压或改变谐振器的谐振频率。以前的一些研究人员已经调查了各种梳形形状。 Hirano等人。 [7]报道用于制造手指的技术,该技术在短暂运动之后可以显着降低分离间隙。这些手指设计成以几乎恒定的速率为最大可能的力输出。罗莎等人。 [8]继续通过设计和测试具有倾斜梳状手指的执行器来寻找高力执行器。叶等。 [9]使用二维数值静电解决方案直接研究了许多手指设计的力偏转行为。他们报告了线性,二次和立方行为的设计。这项工作侧重于设计,建模和测试成型梳状手指,具有用于可调谐谐振器的线性力型材。使用此处概述的原理设计的可调谐谐振器设计成在100 V调谐电压下高达50%的刚度调谐,而早期工作中的4.9%刚度调谐(用于较弱的弹簧)[6]。这扩展摘要描述了工作的关键点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号