首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >A NUMERICAL STUDY OF COUPLING OF THERMAL AND HYDRODYNAMIC OSCILLATIONS IN A HYBRID ROCKET MOTOR
【24h】

A NUMERICAL STUDY OF COUPLING OF THERMAL AND HYDRODYNAMIC OSCILLATIONS IN A HYBRID ROCKET MOTOR

机译:混合火箭电机中热和流体动力振动耦合的数值研究

获取原文

摘要

A one-dimensional, mathematical model is adopted to investigate, numerically, the instabilities experienced inside a hybrid rocket propulsion system. The presumption is that such oscillations feed into combustion instabilities and result in poor performance of the propulsion system and/or result in mechanical vibrations that lead to failure of the rocket motor. The model adopted for the numerical study is a one-dimensional, multi-node representation of a subscale hybrid rocket propulsion system. A one dimensional channel with circular cross-section is configured to simulate a combustion chamber of a rocket hybrid rocket motor and is connected to a converging - diverging nozzle in the downstream and to a plenum with a flow straightener in the upstream side. The working fluid is supplied from a pressurized storage tank to the upstream plenum through a throttle valve. A multi-component approach is used to model, mathematically, the propulsion system. In this integrated-component model, the unsteady flow through the throttle valve and the nozzle is assumed to be one-dimensional and isentropic whereas the flow in the forward plenum and in the combustion chamber is assumed to be a one-dimensional, unsteady, compressible, turbulent, and subsonic. The physics based mathematical model of the flow in the channel consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations of the compressible flow in the combustion chamber are discretized using the second order accurate MacCormack finite difference scheme. Convergence and grid independence studies were done to determine the optimum mesh size and computational time increment needed for the present simulations. Furthermore, steady state results of the proposed model are compared to the results of the isentropic, Fanno (viscous 1-D flow), and Rayleigh (1-D flow with heat input) case studies to verify the accuracy of the numerical predictions. Numerical experiments were then carried out to simulate the flow oscillations in the combustion chamber of a sample subscale hybrid rocket motor. Experiments were repeated for various operating conditions (Re numbers between 10~4 and 10~6) to determine the flow regions where these oscillations are sustained. The numerical simulation results indicate that the proposed mathematical model predicts the expected unsteady axial distributions of temperature, velocity, and pressure in the combustion chamber and the general characteristics of the experimentally observed instabilities associated with hybrid rocket propulsion systems.
机译:一维,数学模型,采用调查,数值的不稳定性经历了混合火箭推进系统内。推定是,这样的振动而在机械振动送入燃烧不稳定性,并导致推进系统和/或结果的性能差铅到火箭发动机的故障。为数值研究采用的模型是一个分量表混合火箭推进系统的一维的,多节点表示。具有圆形横截面的一个维信道被配置为模拟一个火箭混合火箭发动机的燃烧室,并连接到一个会聚 - 发散喷嘴下游并与在上游侧的流道矫直器的增压室。该工作流体从加压存储罐到上游容腔通过节气门阀供给。多组分的方法是用于模拟,在数学上,推进系统。在该集成的组件模型,非定常流通过节流阀和喷嘴被假定为一维和等熵,而假定在向前气室,并在燃烧室内的流动是一个一维的,不稳定的,可压缩,湍流,和亚音速。在通道中的流的基于物理学的数学模型由质量守恒,动量和能量方程受试者的由上述的物理问题所定义的合适的边界条件。该工作流体假定通过一个简单的理想气体相对于被压缩。在燃烧室内的可压缩流的控制方程使用二阶准确MacCormack有限差分格式离散化。融合和电网独立研究,进行以确定最佳网目尺寸和所需的本模拟计算时间增量。此外,所提出的模型的稳定状态结果进行比较,以等熵,范诺(粘滞1-d流),和瑞利(与热量输入1-d流)案例研究,以验证数值预测的准确性的结果。数值实验然后进行模拟的流动振荡样品分量表混合火箭发动机的燃烧室中。重复进行各种操作条件(重新编号10和10〜6之间〜4)实验,以确定其中这些振荡被持续的流动区域。数值模拟结果表明,所提出的数学模型预测在燃烧室温度,速度和压力的预期不稳定轴向分布和具有混合火箭推进系统相关联的实验观察到的不稳定性的一般特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号