首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2011 >A NUMERICAL STUDY OF COUPLING OF THERMAL AND HYDRODYNAMIC OSCILLATIONS IN A HYBRID ROCKET MOTOR
【24h】

A NUMERICAL STUDY OF COUPLING OF THERMAL AND HYDRODYNAMIC OSCILLATIONS IN A HYBRID ROCKET MOTOR

机译:混合动力火箭发动机热力和水力振荡耦合的数值研究

获取原文

摘要

A one-dimensional, mathematical model is adopted to investigate, numerically, the instabilities experienced inside a hybrid rocket propulsion system. The presumption is that such oscillations feed into combustion instabilities and result in poor performance of the propulsion system and/or result in mechanical vibrations that lead to failure of the rocket motor. The model adopted for the numerical study is a one-dimensional, multi-node representation of a subscale hybrid rocket propulsion system. A one dimensional channel with circular cross-section is configured to simulate a combustion chamber of a rocket hybrid rocket motor and is connected to a converging - diverging nozzle in the downstream and to a plenum with a flow straightener in the upstream side. The working fluid is supplied from a pressurized storage tank to the upstream plenum through a throttle valve. A multi-component approach is used to model, mathematically, the propulsion system. In this integrated-component model, the unsteady flow through the throttle valve and the nozzle is assumed to be one-dimensional and isentropic whereas the flow in the forward plenum and in the combustion chamber is assumed to be a one-dimensional, unsteady, compressible, turbulent, and subsonic. The physics based mathematical model of the flow in the channel consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The working fluid is assumed to be compressible through a simple ideal gas relation. The governing equations of the compressible flow in the combustion chamber are discretized using the second order accurate MacCormack finite difference scheme. Convergence and grid independence studies were done to determine the optimum mesh size and computational time increment needed for the present simulations. Furthermore, steady state results of the proposed model are compared to the results of the isentropic, Fanno (viscous 1-D flow), and Rayleigh (1-D flow with heat input) case studies to verify the accuracy of the numerical predictions. Numerical experiments were then carried out to simulate the flow oscillations in the combustion chamber of a sample subscale hybrid rocket motor. Experiments were repeated for various operating conditions (Re numbers between 10~4 and 10~6) to determine the flow regions where these oscillations are sustained. The numerical simulation results indicate that the proposed mathematical model predicts the expected unsteady axial distributions of temperature, velocity, and pressure in the combustion chamber and the general characteristics of the experimentally observed instabilities associated with hybrid rocket propulsion systems.
机译:采用一维数学模型对混合火箭推进系统内部经历的不稳定性进行数值研究。推测是,这种振荡会导致燃烧不稳定性,并导致推进系统的性能下降和/或导致机械振动,从而导致火箭发动机故障。用于数值研究的模型是次尺度混合火箭推进系统的一维,多节点表示。具有圆形横截面的一维通道被配置为模拟火箭混合火箭发动机的燃烧室,并且在下游连接至会聚-发散喷嘴,并在上游侧连接至具有整流器的增压室。通过节流阀将工作流体从加压储罐供应到上游气室。多组件方法用于对推进系统进行数学建模。在此集成模型中,通过节流阀和喷嘴的非恒定流被假定为一维且等熵的,而在前增压室和燃烧室中的非恒定流被假定为一维的,不稳定的,可压缩的,湍流和亚音速。通道中基于物理流的数学模型由质量,动量和能量方程的守恒组成,这些方程受上述物理问题所定义的适当边界条件的约束。通过简单的理想气体关系假定工作流体是可压缩的。使用二阶精确MacCormack有限差分方案离散燃烧室中可压缩流的控制方程。进行了收敛和网格独立性研究,以确定当前模拟所需的最佳网格尺寸和计算时间增量。此外,将所提出模型的稳态结果与等熵,Fanno(粘性一维流动)和Rayleigh(带有热输入的一维流动)案例研究的结果进行比较,以验证数值预测的准确性。然后进行了数值实验,以模拟样本小型混合动力火箭发动机燃烧室中的流动振荡。在各种工况下重复实验(Re数在10〜4和10〜6之间),以确定持续振荡的流动区域。数值模拟结果表明,所提出的数学模型预测了燃烧室内温度,速度和压力的预期非稳态轴向分布,以及与混合火箭推进系统相关的实验观察到的不稳定性的一般特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号